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Temporal Problems



CSP

Let A be a constraint language — a set of relations over a domain A.

CSP(A) is the following problem:

Instance. A set of variables V and a set of constraints C of form
R(v1, . . . , vt), where R ∈ A, t is the arity of R, and v1, . . . , vt ∈ V.

Question. Is there an assignment f : V→ A that satisfies every
R(v1, . . . , vt) ∈ C?
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Point Algebra

CSP Example 1: Point Algebra

Domain R; PA = {<,=, >}.
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Simple Temporal Problem

CSP Example 2: Simple Temporal Problem

S contains R(v1, v2) ≡ v1 − v2 ∈ I for all intervals with endpoints
I−, I+ ∈ Z ∪ {±∞}.
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Disjunctive Temporal Problems

CSP Example 3: Disjunctive Temporal Problem

Dω contains R(v1, . . . , vt) ≡
∨m

ℓ=1 viℓ − vjℓ ∈ Iℓ for t,m ≥ 1,
iℓ, jℓ ∈ {1, . . . , t} and intervals with endpoints I−, I+ ∈ Z ∪ {±∞}.

CSP(Dω) is NP-hard.

CSP Example 4: Binary Disjunctive Temporal Problem

D2 ⊆ Dω contains R(v1, v2) ≡
∨m

ℓ=1 v1 − v2 ∈ Iℓ for m ≥ 1 and intervals
with endpoints I−, I+ ∈ Z ∪ {±∞}.

CSP(D2) is NP-hard.
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Restricted Disjunctive Temporal Problems

Disjunctive Temporal Problem

Dω contains R(v1, . . . , vt) ≡
∨m

ℓ=1 viℓ − vjℓ ∈ Iℓ for t,m ≥ 1,
iℓ, jℓ ∈ {1, . . . , t} and intervals with endpoints I−, I+ ∈ Z ∪ {±∞} .

Restricted Binary Disjunctive Temporal Problem

D2,k contains R(v1, v2) ≡
∨m

ℓ=1 v1 − v2 ∈ Iℓ for m ≥ 1 and intervals with
endpoints I−, I+ ∈ {−k, . . . , k} ∪ {±∞}.

Dω,0 ⊂ Dω,1 ⊂ Dω,2 ⊂ Dω,3 ⊂ . . .

D2,0 ⊂ D2,1 ⊂ D2,2 ⊂ D2,3 ⊂ . . .
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Classical Complexity of Temporal Problems

CSP(S) (Simple Temporal Problem) is in P.

CSP(Dω) (Disjunctive Temporal Problem) is NP-hard.

CSP(D2) (Binary Disjunctive Temporal Problem) is NP-hard.

CSP(Dω,k) is NP-hard for all k.

CSP(D2,k) is in P for k = 0 and NP-hard for k ≥ 1.
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Fine-Grained Complexity



Classical Complexity

We want to analyze time complexity of problem B.

There is a polynomial reduction from 3-Satisfiability to B.

P ̸= NP =⇒ cannot solve instances I of B in poly(∥I∥) time.
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Fine-Grained Complexity

We want to analyze time complexity of problem B.

Exponential-Time Hypothesis (ETH):
No algorithm can solve 3-Satisfiability in subexponential time.

There is a size-preserving reduction from 3-Satisfiability to B.

ETH =⇒ cannot solve instances I of B in subexp(∥I∥) time.
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Results



Results

n – number of variables, k – largest integer in the instance.

Dω Dω,k D2 D2,k

Upper

2O(nk(log n+log k)) 2O(n log n) 2O(n(log n+log k)) 2O(n log log n)

Lower

2o(n log n) 2o(n log n) 2o(n log n) O(cn)*

There may be a sequence c1 < c2 < ... such that CSP(D2,k) is solvable in O(c nk ) time.
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Selected Proofs



Upper bounds on D2: Part I

Theorem 1: CSP(D2) is solvable in 2O(n(log n+log k)) time.

Proof. If satisfiable, there is an assignment f : V→ [0,nk+ 1).

Split f into fN and fQ: fN(v) = ⌊f(v)⌋, fQ(v) = f(v)− fN(v).

Algorithm: guess fN(v)
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Split f into fN and fQ: fN(v) = ⌊f(v)⌋, fQ(v) = f(v)− fN(v).

Algorithm: guess fN(v) and solve the rest with LP methods.

Analysis: nkn = 2n(log n+log k) guesses, O(n2) time per guess.
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Upper bounds on D2: Part II

Theorem 2: CSP(D2,k) is solvable in 2O(n log log n) time for any fixed k.

Proof idea for CSP(D2,1).

If satisfiable, there is an assignment f : V→ [0,n+ 1).

Dominant factor: O(log n)n = 2O(n log log n) time.
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Conclusion



Allen’s Interval Algebra

Prominent formalism for qualitative temporal reasoning.

Basic relation Example Endpoints
I precedes J p iii I+ < J−
J preceded by I p−1 jjj
I meets J m iiii I+ = J−
J met-by I m−1 jjjj
I overlaps J o iiii I− < J− < I+ ,
J overl.-by I o−1 jjjj I+ < J+

I during J d iii I− > J− ,
J includes I d−1 jjjjjjj I+ < J+

I starts J s iii I− = J− ,
J started by I s−1 jjjjjjj I+ < J+

I finishes J f iii I+ = J+ ,
J finished by I f−1 jjjjjjj I− > J−

I equals J e iiii I− = J− ,
jjjj I+ = J+

Constraints may involve any disjunction of basic relations.
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Unit Interval Algebra

Intervals have unit length.

Basic relations: p, m, o, e, o−1, m−1, p−1.

Equivalent to CSP(D2,1):

I equals J J− − I− = 0
I precedes J J− − I− ∈ (1,∞)

I meets J J− − I− = 1
I overlaps J J− − I− ∈ (0, 1)
...
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Questions

Corollary: Unit Interval Algebra is solvable in 2O(n log log n) time.

Question: Is Unit Interval Algebra solvable in 2O(n) time?

Question: Is Allen’s Algebra solvable in 2O(n)?
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Thank you!
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