Fine-Grained Complexity of Temporal Problems

KR2020

Konrad K. Dabrowski" Peter Jonsson? Sebastian Ordyniak®  George Osipov?
"Durham University
2Linképing University

3University of Leeds



Temporal Problems



Let A be a constraint language — a set of relations over a domain A.



Let A be a constraint language — a set of relations over a domain A.

CSP(A) is the following problem:

INSTANCE. A set of variables V and a set of constraints C of form
R(v1,...,vt), where R € A, tis the arity of R, and vq,...,v; € V.



Let A be a constraint language — a set of relations over a domain A.

CSP(A) is the following problem:

INSTANCE. A set of variables V and a set of constraints C of form
R(v1,...,vt), where R € A, tis the arity of R, and vq,...,v; € V.

QUESTION. Is there an assignment f: V — A that satisfies every
R(va,...,v) € C?
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Restricted Disjunctive Temporal Problems

Restricted Disjunctive Temporal Problem

D,k contains R(va,...,vt) = \Vj_ v, — v}, € I for t,m > 1,

Ie,Jo € {1,...,t} and intervals with endpoints

71T € {—R,..., R} U {£oc}.

Restricted Binary Disjunctive Temporal Problem

D, contains R(vi,v,) = \/Zq:1 vi — Vv, € I, for m > 1and intervals with
endpoints I7, 1T € {—R,..., R} U {xoc}.
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Allen’s Interval Algebra with Unit Intervals



Classical Complexity of Temporal Problems

CSP(S) (Simple Temporal Problem) is in P.
CSP(D,,) (Disjunctive Temporal Problem) is NP-hard.

CSP(D,, ¢) is NP-hard for all k.

s

(
(
CSP(D,) (Binary Disjunctive Temporal Problem) is NP-hard.
(
(

CSP(Dy) is in P for k = 0 and NP-hard for k > 1.
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n — number of variables, k - largest integer in the instance.

D, Dw,k D, Dz,k
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n — number of variables, k - largest integer in the instance.

Dw Dw,k DZ DZJ?
Upper zo(nfe(log n+log R)) 20(n log n) zo(n(log n+log R)) 2O(n log log n)
Lower 20(n log n) 2o(n log n) Zo(n log n) O(Cn)*

There may be a sequence ¢ < ¢; < ... such that CSP(D, ) is solvable in O(c,") time.
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Theorem 1: CSP(D,) is solvable in 20(n(legn+logk)) time.

Proof. If satisfiable, there is an assignment f: V — [0,nkR + 1).
Split finto fiy and fo: fie(v) = V)], fo(¥) = f(v) — fiu(v).
Algorithm: guess fy(v) and solve the rest with LP methods.

Suppose fi(u) — fiu(v) = c.

u—-ve(c—1,0) fo(u) < fo(v)
Uu—v=c fo(u) = fo(v)
u—ve(cc+1) fo(u) > fo(v)
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Upper bounds on D,: Part |

Theorem 1: CSP(D,) is solvable in 20(n(legn+logk)) time

Proof. If satisfiable, there is an assignment f: V. — [0,nk 4+ 1).
Split finto fiy and fo: fu(v) = LA(V)], fo(V) = f(v) — fa(¥).
Algorithm: guess fy(v) and solve the rest with LP methods.

Analysis: nk" = 2(leen+logk) gyesses, O(n?) time per guess. O
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Upper bounds on D,: Part Il

Theorem 2: CSP(D; ) is solvable in 20(7'gloen) time for any fixed k.
Proof idea for CSP(D4).

If satisfiable, there is an assignment f: V — [0,n +1).
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Theorem 2: CSP(D,) is solvable in 20("leeloen) time for any fixed k.
Proof idea for CSP(D;.1).
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Theorem 2: CSP(D; ) is solvable in 20("'eeloen) time for any fixed k.
Proof idea for CSP(D31).

If satisfiable, there is an assignment f: V — [0,n + 1).
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Theorem 2: CSP(D; ) is solvable in 20("'eeloen) time for any fixed k.
Proof idea for CSP(D31).

If satisfiable, there is an assignment f: V — [0,n + 1).

recurse recurse
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n
>n/3 < fogn >n/3
variables variables variables
! !
! !
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[ [
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| |
log n

Dominant factor: O(log n)" = 20("leglogn) time,
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Prominent formalism for qualitative temporal reasoning.

[ Basic relation [ Example [ Endpoints |
| precedes J p iii ™ <)~
Jpreceded byl p 333
| meets J m iiii ="

J met-by | m-~' 333
I overlaps J o iiii = <J)- <,
Joverl-by | o " 3iii It <t
I during J d iii = >,
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| starts J s iii - =,
J started by | s~ 33333ii "<t
[ finishes J f iii =Y
J finished by / f71 J3jiiii = > )
I equals J e iiii ==/,
333 =

Constraints may involve any disjunction of basic relations.
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Questions

Corollary: Unit Interval Algebra is solvable in 20(7leglogn) tjme.
Question: s Unit Interval Algebra solvable in 2°(" time?

Question: Is Allen’s Algebra solvable in 20(M?
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Thank you!
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