Fine-Grained Complexity of Temporal Problems KR2020

Konrad K. Dabrowski¹ Peter Jonsson² Sebastian Ordyniak³ George Osipov²

¹Durham University

²Linköping University

³University of Leeds

Temporal Problems

Let \mathcal{A} be a constraint language – a set of relations over a domain A.

Let A be a constraint language – a set of relations over a domain A. CSP(A) is the following problem:

INSTANCE. A set of variables V and a set of constraints C of form $R(v_1, \ldots, v_t)$, where $R \in A$, t is the arity of R, and $v_1, \ldots, v_t \in V$.

Let A be a constraint language – a set of relations over a domain A. CSP(A) is the following problem:

INSTANCE. A set of variables V and a set of constraints C of form $R(v_1, \ldots, v_t)$, where $R \in A$, t is the arity of R, and $v_1, \ldots, v_t \in V$.

QUESTION. Is there an assignment $f: V \to A$ that satisfies every $R(v_1, \ldots, v_t) \in C$?

CSP Example 1: Point Algebra Domain \mathbb{R} ; **PA** = {<, =, >}.

CSP Example 1: Point Algebra

Domain \mathbb{R} ; $PA = \{<, =, >\}$.

CSP Example 1: Point Algebra

Domain \mathbb{R} ; **PA** = {<, =, >}.

Simple Temporal Problem

CSP Example 2: Simple Temporal Problem

S contains $R(v_1, v_2) \equiv v_1 - v_2 \in I$ for all intervals with endpoints $I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}$.

Simple Temporal Problem

CSP Example 2: Simple Temporal Problem

S contains $R(v_1, v_2) \equiv v_1 - v_2 \in I$ for all intervals with endpoints $I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}$.

Simple Temporal Problem

CSP Example 2: Simple Temporal Problem

S contains $R(v_1, v_2) \equiv v_1 - v_2 \in I$ for all intervals with endpoints $I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}$.

CSP Example 3: Disjunctive Temporal Problem

$$\begin{split} \mathbf{D}_{\omega} \text{ contains } R(\mathbf{v}_1, \dots, \mathbf{v}_t) \equiv \bigvee_{\ell=1}^m \mathbf{v}_{i_{\ell}} - \mathbf{v}_{j_{\ell}} \in I_{\ell} \text{ for } t, m \geq 1, \\ i_{\ell}, j_{\ell} \in \{1, \dots, t\} \text{ and intervals with endpoints } I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}. \end{split}$$

CSP Example 3: Disjunctive Temporal Problem

$$\begin{split} \mathbf{D}_{\omega} \text{ contains } R(\mathbf{v}_1, \dots, \mathbf{v}_t) \equiv \bigvee_{\ell=1}^m \mathbf{v}_{i_{\ell}} - \mathbf{v}_{j_{\ell}} \in I_{\ell} \text{ for } t, m \geq 1, \\ i_{\ell}, j_{\ell} \in \{1, \dots, t\} \text{ and intervals with endpoints } I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}. \end{split}$$

CSP Example 4: Binary Disjunctive Temporal Problem

 $\mathbf{D}_2 \subseteq \mathbf{D}_\omega$ contains $R(\mathbf{v}_1, \mathbf{v}_2) \equiv \bigvee_{\ell=1}^m \mathbf{v}_1 - \mathbf{v}_2 \in I_\ell$ for $m \ge 1$ and intervals with endpoints $I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}$.

CSP Example 3: Disjunctive Temporal Problem

$$\begin{split} & \mathsf{D}_{\omega} \text{ contains } R(\mathsf{v}_1, \ldots, \mathsf{v}_t) \equiv \bigvee_{\ell=1}^m \mathsf{v}_{i_{\ell}} - \mathsf{v}_{j_{\ell}} \in I_{\ell} \text{ for } t, m \geq 1, \\ & i_{\ell}, j_{\ell} \in \{1, \ldots, t\} \text{ and intervals with endpoints } I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}. \\ & \mathsf{CSP}(\mathsf{D}_{\omega}) \text{ is NP-hard.} \end{split}$$

CSP Example 4: Binary Disjunctive Temporal Problem

 $\mathbf{D}_2 \subseteq \mathbf{D}_{\omega}$ contains $R(\mathbf{v}_1, \mathbf{v}_2) \equiv \bigvee_{\ell=1}^m \mathbf{v}_1 - \mathbf{v}_2 \in I_{\ell}$ for $m \ge 1$ and intervals with endpoints $I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\}$.

 $CSP(D_2)$ is NP-hard.

Disjunctive Temporal Problem

$$\begin{split} \mathbf{D}_{\omega} \ \ \text{contains} \ R(\mathbf{v}_1,\ldots,\mathbf{v}_t) \equiv \bigvee_{\ell=1}^m \mathbf{v}_{i_\ell} - \mathbf{v}_{j_\ell} \in I_\ell \ \text{for} \ t,m \geq \mathsf{1}, \\ i_\ell, j_\ell \in \{1,\ldots,t\} \ \text{and intervals with endpoints} \ I^-, I^+ \in \mathbb{Z} \cup \{\pm \infty\} \ . \end{split}$$

$$\begin{split} \mathbf{D}_{\omega,k} \text{ contains } R(\mathbf{v}_1, \dots, \mathbf{v}_t) &\equiv \bigvee_{\ell=1}^m \mathbf{v}_{i_\ell} - \mathbf{v}_{j_\ell} \in I_\ell \text{ for } t, m \geq 1, \\ i_\ell, j_\ell \in \{1, \dots, t\} \text{ and intervals with endpoints } \\ I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}. \end{split}$$

$$\begin{split} \mathbf{D}_{\omega,k} \text{ contains } R(\mathbf{v}_1, \dots, \mathbf{v}_t) &\equiv \bigvee_{\ell=1}^m \mathbf{v}_{i_\ell} - \mathbf{v}_{j_\ell} \in I_\ell \text{ for } t, m \geq 1, \\ i_\ell, j_\ell \in \{1, \dots, t\} \text{ and intervals with endpoints} \\ I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}. \end{split}$$

Restricted Binary Disjunctive Temporal Problem

 $\mathbf{D}_{2,k}$ contains $R(\mathbf{v}_1, \mathbf{v}_2) \equiv \bigvee_{\ell=1}^m \mathbf{v}_1 - \mathbf{v}_2 \in I_\ell$ for $m \ge 1$ and intervals with endpoints $I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}$.

$$\begin{split} \mathbf{D}_{\omega,k} \text{ contains } R(\mathbf{v}_1, \dots, \mathbf{v}_t) &\equiv \bigvee_{\ell=1}^m \mathbf{v}_{i_\ell} - \mathbf{v}_{j_\ell} \in I_\ell \text{ for } t, m \geq 1, \\ i_\ell, j_\ell \in \{1, \dots, t\} \text{ and intervals with endpoints } \\ I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}. \end{split}$$

Restricted Binary Disjunctive Temporal Problem

 $\mathbf{D}_{2,k}$ contains $R(\mathbf{v}_1, \mathbf{v}_2) \equiv \bigvee_{\ell=1}^m \mathbf{v}_1 - \mathbf{v}_2 \in I_\ell$ for $m \ge 1$ and intervals with endpoints $I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}$.

 $D_{\omega,0} \subset D_{\omega,1} \subset D_{\omega,2} \subset D_{\omega,3} \subset \dots$ $D_{2,0} \subset D_{2,1} \subset D_{2,2} \subset D_{2,3} \subset \dots$

$$\begin{split} \mathbf{D}_{\omega,k} \text{ contains } R(v_1,\ldots,v_t) &\equiv \bigvee_{\ell=1}^m v_{i_\ell} - v_{j_\ell} \in I_\ell \text{ for } t, m \geq 1, \\ i_\ell, j_\ell \in \{1,\ldots,t\} \text{ and intervals with endpoints} \\ I^-, I^+ \in \{-k,\ldots,k\} \cup \{\pm\infty\}. \end{split}$$

Restricted Binary Disjunctive Temporal Problem

 $\mathbf{D}_{2,k}$ contains $R(\mathbf{v}_1, \mathbf{v}_2) \equiv \bigvee_{\ell=1}^m \mathbf{v}_1 - \mathbf{v}_2 \in I_\ell$ for $m \ge 1$ and intervals with endpoints $I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}$.

 $D_{\omega,0} \subset D_{\omega,1} \subset D_{\omega,2} \subset D_{\omega,3} \subset \dots$ $D_{2,0} \subset D_{2,1} \subset D_{2,2} \subset D_{2,3} \subset \dots$

Disjunctive extensions of Point Algebra

$$\begin{split} \mathbf{D}_{\omega,k} \text{ contains } R(v_1,\ldots,v_t) &\equiv \bigvee_{\ell=1}^m v_{i_\ell} - v_{j_\ell} \in I_\ell \text{ for } t, m \geq 1, \\ i_\ell, j_\ell \in \{1,\ldots,t\} \text{ and intervals with endpoints} \\ I^-, I^+ \in \{-k,\ldots,k\} \cup \{\pm\infty\}. \end{split}$$

Restricted Binary Disjunctive Temporal Problem

 $\mathbf{D}_{2,k}$ contains $R(\mathbf{v}_1, \mathbf{v}_2) \equiv \bigvee_{\ell=1}^m \mathbf{v}_1 - \mathbf{v}_2 \in I_\ell$ for $m \ge 1$ and intervals with endpoints $I^-, I^+ \in \{-k, \dots, k\} \cup \{\pm \infty\}$.

 $D_{\omega,0} \subset D_{\omega,1} \subset D_{\omega,2} \subset D_{\omega,3} \subset \dots$ $D_{2,0} \subset D_{2,1} \subset D_{2,2} \subset D_{2,3} \subset \dots$

Allen's Interval Algebra with Unit Intervals

CSP(S) (Simple Temporal Problem) is in P. CSP(D_{ω}) (Disjunctive Temporal Problem) is NP-hard. CSP(D_2) (Binary Disjunctive Temporal Problem) is NP-hard. CSP($D_{\omega,k}$) is NP-hard for all k. CSP($D_{2,k}$) is in P for k = 0 and NP-hard for $k \ge 1$.

Fine-Grained Complexity

There is a polynomial reduction from 3-SATISFIABILITY to $\mathcal B$.

There is a polynomial reduction from 3-SATISFIABILITY to \mathcal{B} .

 $\mathsf{P} \neq \mathsf{NP} \implies$ cannot solve instances \mathcal{I} of \mathcal{B} in $\mathsf{poly}(||\mathcal{I}||)$ time.

We want to analyze time complexity of problem $\ensuremath{\mathcal{B}}.$

Exponential-Time Hypothesis (ETH): No algorithm can solve 3-SATISFIABILITY in subexponential time.

Exponential-Time Hypothesis (ETH): No algorithm can solve 3-SATISFIABILITY in subexponential time.

There is a size-preserving reduction from 3-SATISFIABILITY to \mathcal{B} .

Exponential-Time Hypothesis (ETH): No algorithm can solve 3-SATISFIABILITY in subexponential time.

There is a size-preserving reduction from 3-SATISFIABILITY to \mathcal{B} . ETH \implies cannot solve instances \mathcal{I} of \mathcal{B} in subexp($||\mathcal{I}||$) time.

Results

	D_{ω}	$D_{\omega,k}$	D ₂	D _{2,k}
Upper				
Lower				

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$			
Lower				

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$			
Lower	2 ^{0(n log n)}			

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}		
Lower	2 ^{0(n log n)}			

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}		
Lower	2 ^{0(n log n)}	20(n log n)		

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}	$2^{O(n(\log n + \log k))}$	
Lower	2 ^{0(n log n)}	2 ^{o(n log n)}		
	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
-------	------------------------------	-------------------------	-----------------------------	-------------------------
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}	$2^{O(n(\log n + \log k))}$	
Lower	2 ^{0(n log n)}	20(n log n)	2 ^{0(n log n)}	

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}	$2^{O(n(\log n + \log k))}$	$2^{O(n \log \log n)}$
Lower	20(n log n)	20(n log n)	2 ^{o(n log n)}	

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}	$2^{O(n(\log n + \log k))}$	$2^{O(n \log \log n)}$
Lower	2 ^{0(n log n)}	20(n log n)	2 ^{0(n log n)}	$O(c^n)^*$

	D_ω	$D_{\omega,k}$	D ₂	D _{2,k}
Upper	$2^{O(nk(\log n + \log k))}$	2 ^{0(n log n)}	$2^{O(n(\log n + \log k))}$	$2^{O(n \log \log n)}$
Lower	2 ^{0(n log n)}	20(n log n)	2 ^{0(n log n)}	$O(c^n)^*$

There may be a sequence $c_1 < c_2 < ...$ such that $CSP(D_{2,k})$ is solvable in $O(c_k^n)$ time.

Selected Proofs

Theorem 1: CSP(D_2) is solvable in $2^{O(n(\log n + \log k))}$ time.

Theorem 1: CSP(D_2) is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f: V \to [0, nk + 1)$.

Theorem 1: $CSP(D_2)$ is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f : V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}$: $f_{\mathbb{N}}(v) = \lfloor f(v) \rfloor$, $f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. **Theorem 1:** CSP(**D**₂) is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f : V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}$: $f_{\mathbb{N}}(v) = \lfloor f(v) \rfloor$, $f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$ **Theorem 1:** CSP(D₂) is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f : V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}$: $f_{\mathbb{N}}(v) = |f(v)|, f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$ Suppose $f_{\mathbb{N}}(u) - f_{\mathbb{N}}(v) = c$. $u - v \in (c - 1, c)$ $f_{\mathbb{Q}}(u) < f_{\mathbb{Q}}(v)$ **Theorem 1:** $CSP(D_2)$ is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f : V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}$: $f_{\mathbb{N}}(v) = \lfloor f(v) \rfloor$, $f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$

Suppose $f_{\mathbb{N}}(u) - f_{\mathbb{N}}(v) = c$.

$u-v\in(c-1,c)$	$f_{\mathbb{Q}}(u) < f_{\mathbb{Q}}(v)$
U - V = C	$f_{\mathbb{Q}}(u) = f_{\mathbb{Q}}(v)$

Theorem 1: $CSP(D_2)$ is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f : V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}$: $f_{\mathbb{N}}(v) = \lfloor f(v) \rfloor$, $f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$

Suppose $f_{\mathbb{N}}(u) - f_{\mathbb{N}}(v) = c$.

$u-v\in(c-1,c)$	$f_{\mathbb{Q}}(u) < f_{\mathbb{Q}}(v)$
U - V = C	$f_{\mathbb{Q}}(u)=f_{\mathbb{Q}}(v)$
$u-v\in(c,c+1)$	$f_{\mathbb{Q}}(u) > f_{\mathbb{Q}}(v)$

Upper bounds on D₂: Part I

Theorem 1: CSP(D_2) is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f: V \rightarrow [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{O}}$: $f_{\mathbb{N}}(v) = |f(v)|, f_{\mathbb{O}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$ Suppose $f_{\mathbb{N}}(u) - f_{\mathbb{N}}(v) = c$. $u - v \in (c - 1, c)$ $f_{\mathbb{O}}(u) < f_{\mathbb{O}}(v)$ $f_{\mathbb{O}}(u) = f_{\mathbb{O}}(v)$ u - v = c $u - v \in (c, c + 1)$ $f_{\mathbb{O}}(u) > f_{\mathbb{O}}(v)$ $u - v \in (c - 1, c]$ $f_{\mathbb{O}}(u) < f_{\mathbb{O}}(v)$ $u - v \in [c - 1, c)$ $f_{\mathbb{O}}(u) \geq f_{\mathbb{O}}(v)$ $u - v \in (c - 1, c) \cup (c, c + 1)$ $f_{\square}(u) \neq f_{\square}(v)$

Upper bounds on D₂: Part I

Theorem 1: $CSP(D_2)$ is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f : V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}: f_{\mathbb{N}}(v) = |f(v)|, f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$ and solve the rest with LP methods. Suppose $f_{\mathbb{N}}(u) - f_{\mathbb{N}}(v) = c$.

$u-v\in(c-1,c)$	$f_{\mathbb{Q}}(u) < f_{\mathbb{Q}}(v)$
U - V = C	$f_{\mathbb{Q}}(u) = f_{\mathbb{Q}}(v)$
$u-v\in(c,c+1)$	$f_{\mathbb{Q}}(u) > f_{\mathbb{Q}}(v)$
$U - V \in (C - 1, C]$	$f_{\mathbb{Q}}(u) \leq f_{\mathbb{Q}}(v)$
$U-V\in [C-1,C)$	$f_{\mathbb{Q}}(u) \ge f_{\mathbb{Q}}(v)$
$u-v\in (c-1,c)\cup (c,c+1)$	$f_{\mathbb{Q}}(u) \neq f_{\mathbb{Q}}(v)$

Theorem 1: $CSP(D_2)$ is solvable in $2^{O(n(\log n + \log k))}$ time. *Proof.* If satisfiable, there is an assignment $f: V \to [0, nk + 1)$. Split f into $f_{\mathbb{N}}$ and $f_{\mathbb{Q}}$: $f_{\mathbb{N}}(v) = |f(v)|, f_{\mathbb{Q}}(v) = f(v) - f_{\mathbb{N}}(v)$. Algorithm: guess $f_{\mathbb{N}}(v)$ and solve the rest with LP methods. Analysis: $nk^n = 2^{n(\log n + \log k)}$ guesses, $O(n^2)$ time per guess.

Theorem 2: $CSP(D_{2,k})$ is solvable in $2^{O(n \log \log n)}$ time for any fixed k.

Upper bounds on D₂: Part II

Theorem 2: $CSP(D_{2,k})$ is solvable in $2^{O(n \log \log n)}$ time for any fixed k. Proof idea for $CSP(D_{2,1})$.

Upper bounds on D₂: Part II

Theorem 2: $CSP(D_{2,k})$ is solvable in $2^{O(n \log \log n)}$ time for any fixed k. Proof idea for $CSP(D_{2,1})$.

If satisfiable, there is an assignment $f: V \rightarrow [0, n + 1)$.

Dominant factor: $O(\log n)^n = 2^{O(n \log \log n)}$ time.

Conclusion

Allen's Interval Algebra

Prominent formalism for qualitative temporal reasoning.

Allen's Interval Algebra

Prominent formalism for qualitative temporal reasoning.

Basic relation		Example	Endpoints
/ precedes J	р	iii	$I^{+} < J^{-}$
J preceded by I	p ⁻¹	jjj	
I meets J	m	iiii	$I^{+} = J^{-}$
J met-by I	m^{-1}	jjjj	
I overlaps J	0	iiii	$ I^{-} < J^{-} < I^{+},$
J overlby I	0 ⁻¹	jjjj	$ I^{+} < J^{+}$
I during J	d	iii	$ I^- > J^-,$
J includes I	d ⁻¹	jjjjjjj	$ I^+ < J^+$
I starts J	S	iii	$I^{-} = J^{-},$
J started by I	s ⁻¹	jjjjjjj	$I^{+} < J^{+}$
/ finishes J	f	iii	$I^{+} = J^{+},$
J finished by I	f ⁻ 1	jjjjjjj	$ I^{-} > J^{-}$
I equals J	е	iiii	$I^{-} = J^{-},$
		jjjj	$I^{+} = J^{+}$

Allen's Interval Algebra

Prominent formalism for qualitative temporal reasoning.

Basic relation		Example	Endpoints
I precedes J	р	iii	$I^+ < J^-$
J preceded by I	p ⁻¹	jjj	
I meets J	m	iiii	$I^{+} = J^{-}$
J met-by I	m^{-1}	jjjj	
I overlaps J	0	iiii	$ I^{-} < J^{-} < I^{+},$
J overlby I	0-1	jjjj	$I^{+} < J^{+}$
I during J	d	iii	$I^- > J^-$,
J includes I	d ⁻¹	jjjjjjj	$I^{+} < J^{+}$
I starts J	S	iii	$I^{-} = J^{-},$
J started by I	s ⁻¹	jjjjjjj	$ I^+ < J^+$
/ finishes J	f	iii	$I^+ = J^+,$
J finished by I	f ⁻ 1	jjjjjjj	$ I^{-} > J^{-}$
/ equals /	е	iiii	$I^{-} = J^{-},$
		jjjj	$I^{+} = J^{+}$

Constraints may involve any disjunction of basic relations.

Intervals have unit length.

Intervals have unit length. Basic relations: p, m, o, e, o⁻¹, m⁻¹, p⁻¹.

Intervals have unit length. Basic relations: **p**, **m**, **o**, **e**, **o**⁻¹, **m**⁻¹, **p**⁻¹. Equivalent to CSP(**D**_{2,1}):

Intervals have unit length. Basic relations: **p**, **m**, **o**, **e**, **o**⁻¹, **m**⁻¹, **p**⁻¹. Equivalent to CSP(**D**_{2,1}):

 $J^- - I^- = 0$
$J = quals J \qquad J^{-} - I^{-} = 0$ $J \text{ precedes } J \qquad J^{-} - I^{-} \in (1, \infty)$

I equals J $J^- - I^- = 0$ I precedes J $J^- - I^- \in (1, \infty)$ I meets J $J^- - I^- = 1$

I equals J $J^- - I^- = 0$ I precedes J $J^- - I^- \in (1, \infty)$ I meets J $J^- - I^- = 1$ I overlaps J $J^- - I^- \in (0, 1)$

I equals J $J^- - I^- = 0$ I precedes J $J^- - I^- \in (1, \infty)$ I meets J $J^- - I^- = 1$ I overlaps J $J^- - I^- \in (0, 1)$

Corollary: Unit Interval Algebra is solvable in $2^{O(n \log \log n)}$ time.

Corollary: Unit Interval Algebra is solvable in 2^{O(n log log n)} time.Question: Is Unit Interval Algebra solvable in 2^{O(n)} time?

Corollary: Unit Interval Algebra is solvable in $2^{O(n \log \log n)}$ time. **Question:** Is Unit Interval Algebra solvable in $2^{O(n)}$ time? **Question:** Is Allen's Algebra solvable in $2^{O(n)}$?

Thank you!