PARAMETERIZED COMPLEXITY OF MINCSP OVER THE POINT ALGEBRA

George Osipov, Linköping University, Sweden Marcin Pilipczuk, University of Warsaw, Poland Magnus Wahlström, Royal Holloway University of London, UK

> ESA 2024, Egham, UK September 2, 2024

Point Algebra is the set of relations $\{<, >, \leq, \geq, =, \neq\}$ over \mathbb{Q} . Let us fix a *constraint language* $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$.

 $\operatorname{CSP}(\Gamma)$ input is (V, \mathcal{C}) , where

- V is a set of variables,
- C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$.

Q: is there $\alpha: V \to \mathbb{Q}$ that satisfies all constraints in \mathcal{C} ?

Point Algebra is the set of relations $\{<, >, \leq, \geq, =, \neq\}$ over \mathbb{Q} . Let us fix a *constraint language* $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$.

 $\operatorname{CSP}(\Gamma)$ input is (V, \mathcal{C}) , where

- V is a set of variables,
- C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$.

Q: is there $\alpha: V \to \mathbb{Q}$ that satisfies all constraints in \mathcal{C} ?

Ex:

 $v_1 \leq v_2, \qquad v_1 \neq v_2, \qquad v_2 > v_3$

is satisfiable, e.g. $\alpha(v_1) = 1$, $\alpha(v_2) = 2$, $\alpha(v_3) = 0$.

Constraint Satisfaction Problem (CSP) over Point Algebra

Point Algebra is the set of relations $\{<, >, \leq, \geq, =, \neq\}$ over \mathbb{Q} . Let us fix a *constraint language* $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$.

 $\operatorname{CSP}(\Gamma)$ input is (V, \mathcal{C}) , where

• V is a set of variables,

• C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$.

Q: is there $\alpha: V \to \mathbb{Q}$ that satisfies all constraints in \mathcal{C} ?

Ex:

$$v_1 \leq v_2, \quad v_1 \neq v_2, \quad v_2 > v_3$$

is satisfiable, e.g. $\alpha(v_1) = 1, \ \alpha(v_2) = 2, \ \alpha(v_3) = 0.$

$$v_1 < v_2, \qquad v_2 = v_3, \qquad v_1 > v_3$$

is not satisfiable.

Point Algebra is the set of relations $\{<, >, \leq, \geq, =, \neq\}$ over \mathbb{Q} . Let us fix a *constraint language* $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$.

 $\operatorname{CSP}(\Gamma)$ input is (V, \mathcal{C}) , where

• V is a set of variables,

• C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$.

Q: is there $\alpha: V \to \mathbb{Q}$ that satisfies all constraints in \mathcal{C} ?

 $\operatorname{CSP}(\Gamma)$ is solvable in polynomial time for all $\Gamma \subseteq \mathcal{A}$.

 $MINCSP(\Gamma)$ input is (V, C, k), where

- V is a set of variables,
- C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$,
- k is an integer.

Q: is there $\alpha: V \to \mathbb{Q}$ that *breaks* at most k constraints in C?

Unless $MINCSP(\Gamma)$ is trivial, it is NP-hard and UGC-hard to O(1)-apx.

 $MINCSP(\Gamma)$ input is (V, C, k), where

- V is a set of variables,
- C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$,
- k is an integer.

Q: is there $\alpha: V \to \mathbb{Q}$ that *breaks* at most *k* constraints in *C*?

Unless $MINCSP(\Gamma)$ is trivial, it is NP-hard and UGC-hard to O(1)-apx. We study parameterized complexity:

FPTvsW[1]-hard $f(k) \cdot n^{O(1)}$ vs $n^{g(k)}$

Minimum-Cost CSP (MinCSP) over Point Algebra

 $MINCSP(\Gamma)$ input is (V, C, k), where

- V is a set of variables,
- C is a set of constraints of the form $u \odot v$ with $u, v \in V$ and $\odot \in \Gamma$,
- k is an integer.

Q: is there $\alpha: V \to \mathbb{Q}$ that *breaks* at most *k* constraints in *C*?

Unless $MINCSP(\Gamma)$ is trivial, it is NP-hard and UGC-hard to O(1)-apx.

Theorem

Let $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$.

- If $\{\leq,\neq\} \subseteq \Gamma$, then $\operatorname{MinCSP}(\Gamma)$ is W[1]-hard.
- If $\{\geq,\neq\} \subseteq \Gamma$, then $\operatorname{MinCSP}(\Gamma)$ is W[1]-hard.
- Otherwise, $MinCSP(\Gamma)$ is FPT.

For different $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$, MINCSP(Γ) captures Multicut, Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

 Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu O'Sullivan Razgon @STOC'08 → JACM'08)

- Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu O'Sullivan Razgon @STOC'08 → JACM'08)
- Γ = {=, ≠}: Multicut is FPT (Bousquet Daligault Thomassé or Marx Razgon @STOC'11 → SICOMP'18 or SICOMP'14)

- Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu O'Sullivan Razgon @STOC'08 → JACM'08)
- Γ = {=, ≠}: Multicut is FPT (Bousquet Daligault Thomassé or Marx Razgon @STOC'11 → SICOMP'18 or SICOMP'14)
- Γ = {<, ≤}: Directed Subset Feedback Arc Set is FPT (Chitnis Cygan Hajiaghayi Marx @ICALP'12 → TALG'15)

- Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu O'Sullivan Razgon @STOC'08 → JACM'08)
- Γ = {=, ≠}: Multicut is FPT (Bousquet Daligault Thomassé or Marx Razgon @STOC'11 → SICOMP'18 or SICOMP'14)
- Γ = {<, ≤}: Directed Subset Feedback Arc Set is FPT (Chitnis Cygan Hajiaghayi Marx @ICALP'12 → TALG'15)
- ? Γ = {≤, ≠}: Directed Symmetric Multicut (Eiben Rambaud Wahlström @IPEC'22)

- Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu O'Sullivan Razgon @STOC'08 → JACM'08)
- Γ = {=, ≠}: Multicut is FPT (Bousquet Daligault Thomassé or Marx Razgon @STOC'11 → SICOMP'18 or SICOMP'14)
- Γ = {<, ≤}: Directed Subset Feedback Arc Set is FPT (Chitnis Cygan Hajiaghayi Marx @ICALP'12 → TALG'15)
- ? Γ = {≤, ≠}: Directed Symmetric Multicut (Eiben Rambaud Wahlström @IPEC'22)
- New flow-augmentation based algorithms for the first three, last still open (Kim Masařík Pilipczuk Sharma Wahlström SIDMA'24)

For different $\Gamma \subseteq \{<, >, \leq, \geq, =, \neq\}$, MINCSP(Γ) captures Multicut, Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

- Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu O'Sullivan Razgon @STOC'08 → JACM'08)
- Γ = {=, ≠}: Multicut is FPT (Bousquet Daligault Thomassé or Marx Razgon @STOC'11 → SICOMP'18 or SICOMP'14)
- Γ = {<, ≤}: Directed Subset Feedback Arc Set is FPT (Chitnis Cygan Hajiaghayi Marx @ICALP'12 → TALG'15)
- ? Γ = {≤, ≠}: Directed Symmetric Multicut (Eiben Rambaud Wahlström @IPEC'22)
- New flow-augmentation based algorithms for the first three, last still open (Kim Masařík Pilipczuk Sharma Wahlström SIDMA'24)

We show that Directed Symmetric Multicut is W[1]-hard, and every ${\rm MinCSP}(\Gamma)$ that avoids it is FPT.

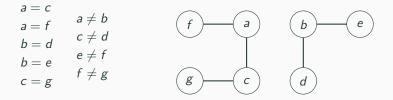
MinCSP and Graph Problems

An instance of CSP(<) is satisfiable iff the digraph is acyclic.



MINCSP(<) is Directed Feedback Arc Set: given a digraph G and $k \in \mathbb{N}$, delete at most k arcs from G to make it acyclic.

An instance of $CSP(=, \neq)$ is satisfiable iff there is no =-path between disequal variables.

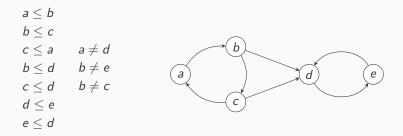


MINCSP(=, \neq) is Edge Multicut¹: given a graph *G*, a set $\mathcal{T} \subseteq \binom{V(G)}{2}$ and $k \in \mathbb{N}$, delete *k* edges from *G* so that no pair in \mathcal{T} is connected.

¹Simple trick allows assuming wlog that \neq -constraints are undeletable.

Directed Symmetric Multicut and $MinCSP(\leq, \neq)$

An instance of $CSP(\leq, \neq)$ is satisfiable iff there is no \leq -cycle with two disequal variables.



MINCSP(\leq, \neq) is Directed Symmetric Multicut²: given a digraph *G*, a set $\mathcal{T} \subseteq \binom{V(G)}{2}$ and $k \in \mathbb{N}$, delete *k* arcs from *G* so that no pair in \mathcal{T} is strongly connected.

²Simple trick allows assuming wlog that \neq -constraints are undeletable.

Classification

$$\label{eq:Gamma} \begin{split} \Gamma \subseteq \{<,>,\leq,\geq,=,\neq\} \text{, so } 2^6 \text{ cases.} \\ \text{Can restrict to } \Gamma \subseteq \{<,\leq,=,\neq\}. \end{split}$$

 $\Gamma \subseteq \{<,>,\leq,\geq,=,\neq\},$ so 2^6 cases.

Can restrict to $\Gamma \subseteq \{<, \leq, =, \neq\}$.

Lemma 1: If $\leq \in \Gamma$, then $\operatorname{MINCSP}(\Gamma \cup \{=\}) \leq_{FPT} \operatorname{MINCSP}(\Gamma)$. *Proof*: Replace u = v with $u \leq v$ and $v \leq u$. Opt deletes at most one. $\Gamma \subseteq \{<,>,\leq,\geq,=,\neq\},$ so 2^6 cases.

Can restrict to $\Gamma \subseteq \{<, \leq, =, \neq\}$.

Lemma 1: If $\leq \in \Gamma$, then $\operatorname{MINCSP}(\Gamma \cup \{=\}) \leq_{FPT} \operatorname{MINCSP}(\Gamma)$. *Proof*: Replace u = v with $u \leq v$ and $v \leq u$. Opt deletes at most one.

Lemma 2: If $\leq \neq \in \Gamma$, then $\operatorname{MINCSP}(\Gamma \cup \{<\}) \leq_{FPT} \operatorname{MINCSP}(\Gamma)$. *Proof*: Replace u < v with $u \leq v$ and $u \neq v$. Opt deletes at most one. $\Gamma \subseteq \{<,>,\leq,\geq,=,\neq\},$ so 2^6 cases.

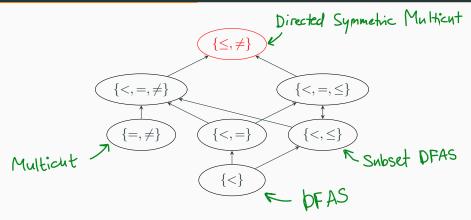
Can restrict to $\Gamma \subseteq \{<, \leq, =, \neq\}$.

Lemma 1: If $\leq \in \Gamma$, then $\operatorname{MINCSP}(\Gamma \cup \{=\}) \leq_{FPT} \operatorname{MINCSP}(\Gamma)$. *Proof*: Replace u = v with $u \leq v$ and $v \leq u$. Opt deletes at most one.

Lemma 2: If $\leq \neq \in \Gamma$, then $\operatorname{MINCSP}(\Gamma \cup \{<\}) \leq_{FPT} \operatorname{MINCSP}(\Gamma)$. *Proof*: Replace u < v with $u \leq v$ and $u \neq v$. Opt deletes at most one.

Lemmas 1 & 2 \implies MINCSP($<, \leq, =, \neq$) \leq_{FPT} MINCSP(\leq, \neq).

Classification: Map



 $MINCSP(\leq, \neq)$ is W[1]-hard.

 $MINCSP(<, =, \leq) \leq_{FPT} MINCSP(<, \leq)$, which is FPT [CCHM].

 $MINCSP(<,=,\neq)$ solved by reduction into BUNDLED ALMOST 2-SAT.

Algorithm

ALMOST 2-SAT input is (V, C, k), where

- V is a set of variables,
- C is a set of constraints of the form $(u \lor v)$, $(\bar{u} \lor \bar{v})$ or $(\bar{u} \lor v)$,
- k is an integer.

Q: is there $\alpha : V \to \{0, 1\}$ that breaks at most k constraints in C? ALMOST 2-SAT is FPT [Razgon O'Sullivan ICALP'08 \rightarrow JCSS'09] In BUNDLED ALMOST 2-SAT, constraints are 2-SAT formulas, e.g.:

1.
$$(a \lor b) \land (\bar{c} \lor \bar{d})$$

2. $(a \to b) \land (b \to c) \land (c \to d)$
3. $(a \lor b) \land (\bar{a} \lor \bar{b})$

Theorem (Kim Kratsch Pilipczuk Wahlström SODA'23) BUNDLED ALMOST 2-SAT is FPT^3 if all formulas are $2K_2$ -free.

³w.r.t. $k + \max$ formula length

In BUNDLED ALMOST 2-SAT, constraints are 2-SAT formulas, e.g.:

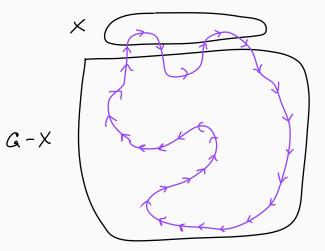
- 1. $(a \lor b) \land (\bar{c} \lor \bar{d})$ Edges $\{ab, cd\}$: not $2K_2$ -free 2. $(a \to b) \land (b \to c) \land (c \to d)$ Edges $\{ab, bc, cd\}$: $2K_2$ -free 3. $(a \lor b) \land (\bar{a} \lor \bar{b})$
 - Edges $\{ab\}$: $(a \lor b)$ Edges $\{ab\}$: $2K_2$ -free

Theorem (Kim Kratsch Pilipczuk Wahlström SODA'23)

BUNDLED ALMOST 2-SAT is FPT^3 if all formulas are $2K_2$ -free.

³w.r.t. $k + \max$ formula length

Iterative compression: $X \subseteq V$ s.t. $|X| \le k+1$ and G - X is acyclic.



Let $\alpha: V \to \mathbb{Q}$ be opt. Guess $\alpha|_X$ in $2^{O(*)}$ time.

$$0 \times 1 \times 2 \times 3$$

New goal: assign $V \setminus X$ into |X| + 1 buckets. Introduce Boolean variables: $v \in V(G) \mapsto (v_0, \dots, v_{|X|})$. Let $\alpha: V \to \mathbb{Q}$ be opt. Guess $\alpha|_X$ in $2^{O(4)}$ time.

$$\int O \left(X_{1} \right) \left(1 \right) \left(X_{2} \right) \left(2 \right) \left(X_{3} \right) \left(3 \right) \left(1 \right) \left(X_{2} \right) \left(2 \right) \left(X_{3} \right) \left(3 \right) \left(1 \right) \left(1 \right) \left(1 \right) \left(2 \right) \left(1 \right) \left(1$$

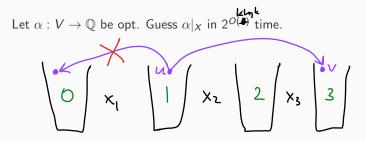
New goal: assign $V \setminus X$ into |X| + 1 buckets.

Introduce Boolean variables: $v \in V(G) \mapsto (v_0, \ldots, v_{|X|})$.

Intepretation: $v_i = 1$ iff bucket $(v) \ge i$.

Ex: bucket(v) = 3, $v \mapsto (1, 1, 1, 1, 0, \dots, 0)$.

Algorithm for MinCSP(<)



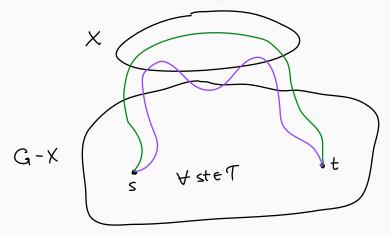
New goal: assign $V \setminus X$ into |X| + 1 buckets. Introduce Boolean variables: $v \in V(G) \mapsto (v_0, \dots, v_{|X|})$.

For every arc (u, v) in G, add constraint

$$\bigwedge_{i < j} (u_i \leftarrow u_j) \land \bigwedge_{i < j} (v_i \leftarrow v_j) \land \bigwedge_{i \leq j} (u_i \rightarrow v_j).$$

Input: graph G, set $\mathcal{T} \subseteq \binom{V}{2}$, integer k.

Compression: $X \subseteq V$ s.t. $|X| \in O(k)$ and X cuts all *st*-paths for $st \in \mathcal{T}$.



Ν

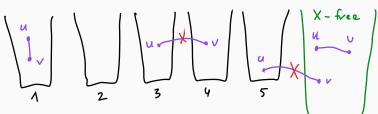
 $\begin{array}{c} \mathbf{k} \mathbf{b} \mathbf{k} \\ \text{Let } \alpha: V \to \mathbb{Q} \text{ be opt. Guess } \alpha|_X \text{ in } 2^{O(\clubsuit)} \text{ time.} \end{array}$

Introduce Boolean variables: $v \in V(G) \mapsto (v_1, \ldots, v_{|X|})$.

KINK Let $\alpha: V \to \mathbb{Q}$ be opt. Guess $\alpha|_X$ in $2^{O(\mathbb{A})}$ time. x_1 x_2 x_3 x_4 x_7 X-free00010 01000 00100 00001 10000 New goal: assign $V \setminus X$ into |X| + 1 buckets. 0000p Introduce Boolean variables: $v \in V(G) \mapsto (v_1, \ldots, v_{|X|})$. If bucket(v) = 0, then $v \mapsto (0, 0, 0, ..., 0)$. If bucket(v) = 2, then $v \mapsto (0, 1, 0, ..., 0)$.

Algorithm for $MinCSP(=, \neq)$

Let $\alpha: V \to \mathbb{Q}$ be opt. Guess $\alpha|_X$ in $2^{O(\bigstar)}$ time.



New goal: assign $V \setminus X$ into |X| + 1 buckets. Introduce Boolean variables: $v \in V(G) \mapsto (v_1, \dots, v_{|X|})$. For every edge uv in G, add constraint

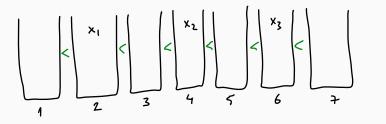
$$\bigwedge_{i < j} (\bar{u}_i \vee \bar{u}_j) \wedge \bigwedge_{i < j} (\bar{v}_i \vee \bar{v}_j) \wedge \bigwedge_i (u_i \to v_i) \wedge \bigwedge_i (v_i \to u_i).$$

at most one 1
$$\overrightarrow{u} = \overrightarrow{v}$$

0

Algorithm for $MinCSP(<,=,\neq)$

Combine both encodings.

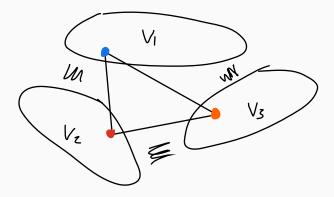


Crucial: component(v) = $i \implies$ order(v) = i can be enforced in $2K_2$ -free 2-SAT, not other way around:

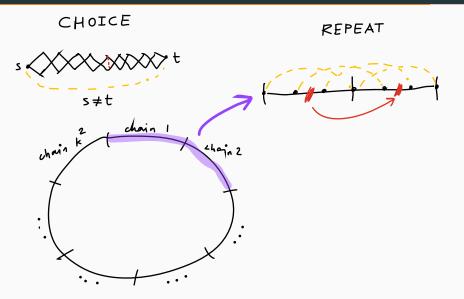
Lower Bound

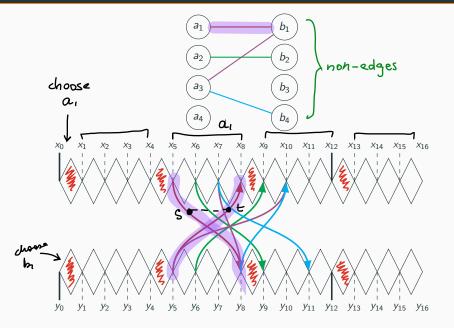
Directed Symmetric Multicut: given a digraph D, a set $\mathcal{T} \subseteq {\binom{V}{2}}$, and $k \in \mathbb{N}$, delete k arcs so that no pair in \mathcal{T} is strongly connected.

Reduction from Multicolored Clique: given *G* with $V(G) = V_1 \uplus \cdots \uplus V_k$, find a clique with one vertex in each V_i .



Diamond n W е S chain





Conclusion

Temporal relation is anything first-order definable using <

Conclusion

We classify parameterized complexity of $\mathrm{MinCSP}(\Gamma)$ for all $\Gamma \in \{<,>,\leq,\geq,=,\neq\}.$

Temporal relation is anything first-order definable using <

Ex.:
$$(x = y) \equiv \neg (x < y) \land \neg (x > y)$$
.
Ex.: Between $(x, y, z) \equiv (x < y \land y < z) \lor (z < y \land y < x)$.

Temporal relation is anything first-order definable using < *Project* [KMPSW]: classifying all temporal MinCSPs.

Conclusion

We classify parameterized complexity of $\mathrm{MinCSP}(\Gamma)$ for all $\Gamma \in \{<,>,\leq,\geq,=,\neq\}.$

Temporal relation is anything first-order definable using < *Project* [KMPSW]: classifying all temporal MinCSPs. Obstacle: Directed Symmetric Multicut

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

```
Obstacle: Directed Symmetric Multicut
```

Temporal relation is anything first-order definable using < *Project* [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric

Obstacle: MINCSP($(a < b) \land (c < d) \land (a \le d) \land (c \le b)$).

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric

Obstacle: MINCSP($(a < b) \land (c < d) \land (a \le d) \land (c \le b)$).

Bigger obstacle: are there more obstacles? The CSP classification for temporal languages has lots of cases. More general methods would help.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric

Obstacle: MINCSP($(a < b) \land (c < d) \land (a \le d) \land (c \le b)$).

Bigger obstacle: are there more obstacles? The CSP classification for temporal languages has lots of cases. More general methods would help.

Thank you!