
Parameterized Complexity of

MinCSP over the Point Algebra

George Osipov, Linköping University, Sweden

Marcin Pilipczuk, University of Warsaw, Poland

Magnus Wahlström, Royal Holloway University of London, UK

ESA 2024, Egham, UK

September 2, 2024

1

Constraint Satisfaction Problem (CSP) over Point Algebra

Point Algebra is the set of relations {<,>,≤,≥,=, ̸=} over Q.

Let us fix a constraint language Γ ⊆ {<,>,≤,≥,=, ̸=}.

CSP(Γ) input is (V , C), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ.

Q: is there α : V → Q that satisfies all constraints in C?

CSP(Γ) is solvable in polynomial time for all Γ ⊆ A.

2

Constraint Satisfaction Problem (CSP) over Point Algebra

Point Algebra is the set of relations {<,>,≤,≥,=, ̸=} over Q.

Let us fix a constraint language Γ ⊆ {<,>,≤,≥,=, ̸=}.

CSP(Γ) input is (V , C), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ.

Q: is there α : V → Q that satisfies all constraints in C?

Ex:

v1 ≤ v2, v1 ̸= v2, v2 > v3

is satisfiable, e.g. α(v1) = 1, α(v2) = 2, α(v3) = 0.

CSP(Γ) is solvable in polynomial time for all Γ ⊆ A.

2

Constraint Satisfaction Problem (CSP) over Point Algebra

Point Algebra is the set of relations {<,>,≤,≥,=, ̸=} over Q.

Let us fix a constraint language Γ ⊆ {<,>,≤,≥,=, ̸=}.

CSP(Γ) input is (V , C), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ.

Q: is there α : V → Q that satisfies all constraints in C?

Ex:

v1 ≤ v2, v1 ̸= v2, v2 > v3

is satisfiable, e.g. α(v1) = 1, α(v2) = 2, α(v3) = 0. Ex:

v1 < v2, v2 = v3, v1 > v3

is not satisfiable.

CSP(Γ) is solvable in polynomial time for all Γ ⊆ A.

2

geoos58
Rectangle

geoos58
Rectangle

geoos58
Pencil

Constraint Satisfaction Problem (CSP) over Point Algebra

Point Algebra is the set of relations {<,>,≤,≥,=, ̸=} over Q.

Let us fix a constraint language Γ ⊆ {<,>,≤,≥,=, ̸=}.

CSP(Γ) input is (V , C), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ.

Q: is there α : V → Q that satisfies all constraints in C?

CSP(Γ) is solvable in polynomial time for all Γ ⊆ A.

2

Minimum-Cost CSP (MinCSP) over Point Algebra

MinCSP(Γ) input is (V , C, k), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ,

• k is an integer.

Q: is there α : V → Q that breaks at most k constraints in C?

Unless MinCSP(Γ) is trivial, it is NP-hard and UGC-hard to O(1)-apx.

3

Minimum-Cost CSP (MinCSP) over Point Algebra

MinCSP(Γ) input is (V , C, k), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ,

• k is an integer.

Q: is there α : V → Q that breaks at most k constraints in C?

Unless MinCSP(Γ) is trivial, it is NP-hard and UGC-hard to O(1)-apx.

We study parameterized complexity:

FPT vs W[1]-hard

f (k) · nO(1) vs ng(k)

3

Minimum-Cost CSP (MinCSP) over Point Algebra

MinCSP(Γ) input is (V , C, k), where

• V is a set of variables,

• C is a set of constraints of the form u ⊙ v with u, v ∈ V and ⊙ ∈ Γ,

• k is an integer.

Q: is there α : V → Q that breaks at most k constraints in C?

Unless MinCSP(Γ) is trivial, it is NP-hard and UGC-hard to O(1)-apx.

Theorem

Let Γ ⊆ {<,>,≤,≥,=, ̸=}.

• If {≤, ̸=} ⊆ Γ, then MinCSP(Γ) is W[1]-hard.

• If {≥, ̸=} ⊆ Γ, then MinCSP(Γ) is W[1]-hard.

• Otherwise, MinCSP(Γ) is FPT.

3

Motivation

For different Γ ⊆ {<,>,≤,≥,=, ̸=}, MinCSP(Γ) captures Multicut,

Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

• Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu

O’Sullivan Razgon @STOC’08 → JACM’08)

• Γ = {=, ̸=}: Multicut is FPT (Bousquet Daligault Thomassé or

Marx Razgon @STOC’11 → SICOMP’18 or SICOMP’14)

• Γ = {<,≤}: Directed Subset Feedback Arc Set is FPT (Chitnis

Cygan Hajiaghayi Marx @ICALP’12 → TALG’15)

? Γ = {≤, ̸=}: Directed Symmetric Multicut (Eiben Rambaud

Wahlström @IPEC’22)

• New flow-augmentation based algorithms for the first three, last still

open (Kim Masǎŕık Pilipczuk Sharma Wahlström SIDMA’24)

We show that Directed Symmetric Multicut is W[1]-hard, and every

MinCSP(Γ) that avoids it is FPT.

4

Motivation

For different Γ ⊆ {<,>,≤,≥,=, ̸=}, MinCSP(Γ) captures Multicut,

Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

• Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu

O’Sullivan Razgon @STOC’08 → JACM’08)

• Γ = {=, ̸=}: Multicut is FPT (Bousquet Daligault Thomassé or

Marx Razgon @STOC’11 → SICOMP’18 or SICOMP’14)

• Γ = {<,≤}: Directed Subset Feedback Arc Set is FPT (Chitnis

Cygan Hajiaghayi Marx @ICALP’12 → TALG’15)

? Γ = {≤, ̸=}: Directed Symmetric Multicut (Eiben Rambaud

Wahlström @IPEC’22)

• New flow-augmentation based algorithms for the first three, last still

open (Kim Masǎŕık Pilipczuk Sharma Wahlström SIDMA’24)

We show that Directed Symmetric Multicut is W[1]-hard, and every

MinCSP(Γ) that avoids it is FPT.

4

Motivation

For different Γ ⊆ {<,>,≤,≥,=, ̸=}, MinCSP(Γ) captures Multicut,

Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

• Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu

O’Sullivan Razgon @STOC’08 → JACM’08)

• Γ = {=, ̸=}: Multicut is FPT (Bousquet Daligault Thomassé or

Marx Razgon @STOC’11 → SICOMP’18 or SICOMP’14)

• Γ = {<,≤}: Directed Subset Feedback Arc Set is FPT (Chitnis

Cygan Hajiaghayi Marx @ICALP’12 → TALG’15)

? Γ = {≤, ̸=}: Directed Symmetric Multicut (Eiben Rambaud

Wahlström @IPEC’22)

• New flow-augmentation based algorithms for the first three, last still

open (Kim Masǎŕık Pilipczuk Sharma Wahlström SIDMA’24)

We show that Directed Symmetric Multicut is W[1]-hard, and every

MinCSP(Γ) that avoids it is FPT.

4

Motivation

For different Γ ⊆ {<,>,≤,≥,=, ̸=}, MinCSP(Γ) captures Multicut,

Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

• Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu

O’Sullivan Razgon @STOC’08 → JACM’08)

• Γ = {=, ̸=}: Multicut is FPT (Bousquet Daligault Thomassé or

Marx Razgon @STOC’11 → SICOMP’18 or SICOMP’14)

• Γ = {<,≤}: Directed Subset Feedback Arc Set is FPT (Chitnis

Cygan Hajiaghayi Marx @ICALP’12 → TALG’15)

? Γ = {≤, ̸=}: Directed Symmetric Multicut (Eiben Rambaud

Wahlström @IPEC’22)

• New flow-augmentation based algorithms for the first three, last still

open (Kim Masǎŕık Pilipczuk Sharma Wahlström SIDMA’24)

We show that Directed Symmetric Multicut is W[1]-hard, and every

MinCSP(Γ) that avoids it is FPT.

4

Motivation

For different Γ ⊆ {<,>,≤,≥,=, ̸=}, MinCSP(Γ) captures Multicut,

Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

• Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu

O’Sullivan Razgon @STOC’08 → JACM’08)

• Γ = {=, ̸=}: Multicut is FPT (Bousquet Daligault Thomassé or

Marx Razgon @STOC’11 → SICOMP’18 or SICOMP’14)

• Γ = {<,≤}: Directed Subset Feedback Arc Set is FPT (Chitnis

Cygan Hajiaghayi Marx @ICALP’12 → TALG’15)

? Γ = {≤, ̸=}: Directed Symmetric Multicut (Eiben Rambaud

Wahlström @IPEC’22)

• New flow-augmentation based algorithms for the first three, last still

open (Kim Masǎŕık Pilipczuk Sharma Wahlström SIDMA’24)

We show that Directed Symmetric Multicut is W[1]-hard, and every

MinCSP(Γ) that avoids it is FPT.

4

Motivation

For different Γ ⊆ {<,>,≤,≥,=, ̸=}, MinCSP(Γ) captures Multicut,

Directed (Subset) Feedback Arc Set and Directed Symmetric Multicut.

• Γ = {<}: Directed Feedback Arc Set is FPT (Chen Liu Lu

O’Sullivan Razgon @STOC’08 → JACM’08)

• Γ = {=, ̸=}: Multicut is FPT (Bousquet Daligault Thomassé or

Marx Razgon @STOC’11 → SICOMP’18 or SICOMP’14)

• Γ = {<,≤}: Directed Subset Feedback Arc Set is FPT (Chitnis

Cygan Hajiaghayi Marx @ICALP’12 → TALG’15)

? Γ = {≤, ̸=}: Directed Symmetric Multicut (Eiben Rambaud

Wahlström @IPEC’22)

• New flow-augmentation based algorithms for the first three, last still

open (Kim Masǎŕık Pilipczuk Sharma Wahlström SIDMA’24)

We show that Directed Symmetric Multicut is W[1]-hard, and every

MinCSP(Γ) that avoids it is FPT.

4

MinCSP and Graph Problems

4

Directed Feedback Arc Set and MinCSP(<)

An instance of CSP(<) is satisfiable iff the digraph is acyclic.

a < b

b < c

c < d

d < a

a b

cd

MinCSP(<) is Directed Feedback Arc Set: given a digraph G and

k ∈ N, delete at most k arcs from G to make it acyclic.

5

Edge Multicut and MinCSP(=, ̸=)

An instance of CSP(=, ̸=) is satisfiable iff there is no =-path between

disequal variables.

a = c

a = f

b = d

b = e

c = g

a ̸= b

c ̸= d

e ̸= f

f ̸= g

a b

c d

ef

g

MinCSP(=, ̸=) is Edge Multicut1: given a graph G , a set T ⊆
(
V (G)
2

)
and k ∈ N, delete k edges from G so that no pair in T is connected.

1Simple trick allows assuming wlog that ̸=-constraints are undeletable.

6

Directed Symmetric Multicut and MinCSP(≤, ̸=)

An instance of CSP(≤, ̸=) is satisfiable iff there is no ≤-cycle with two

disequal variables.

a ≤ b

b ≤ c

c ≤ a

b ≤ d

c ≤ d

d ≤ e

e ≤ d

a ̸= d

b ̸= e

b ̸= c
a

b

c

d e

MinCSP(≤, ̸=) is Directed Symmetric Multicut2: given a digraph G , a

set T ⊆
(
V (G)
2

)
and k ∈ N, delete k arcs from G so that no pair in T is

strongly connected.

2Simple trick allows assuming wlog that ̸=-constraints are undeletable.

7

Classification

7

Classification: Case Analysis

Γ ⊆ {<,>,≤,≥,=, ̸=}, so 26 cases.

Can restrict to Γ ⊆ {<,≤,=, ̸=}.

Lemma 1: If ≤ ∈ Γ, then MinCSP(Γ ∪ {=}) ≤FPT MinCSP(Γ).

Proof : Replace u = v with u ≤ v and v ≤ u. Opt deletes at most one.

Lemma 2: If ≤, ̸= ∈ Γ, then MinCSP(Γ ∪ {<}) ≤FPT MinCSP(Γ).

Proof : Replace u < v with u ≤ v and u ̸= v . Opt deletes at most one.

Lemmas 1 & 2 =⇒ MinCSP(<,≤,=, ̸=) ≤FPT MinCSP(≤, ̸=).

8

Classification: Case Analysis

Γ ⊆ {<,>,≤,≥,=, ̸=}, so 26 cases.

Can restrict to Γ ⊆ {<,≤,=, ̸=}.

Lemma 1: If ≤ ∈ Γ, then MinCSP(Γ ∪ {=}) ≤FPT MinCSP(Γ).

Proof : Replace u = v with u ≤ v and v ≤ u. Opt deletes at most one.

Lemma 2: If ≤, ̸= ∈ Γ, then MinCSP(Γ ∪ {<}) ≤FPT MinCSP(Γ).

Proof : Replace u < v with u ≤ v and u ̸= v . Opt deletes at most one.

Lemmas 1 & 2 =⇒ MinCSP(<,≤,=, ̸=) ≤FPT MinCSP(≤, ̸=).

8

Classification: Case Analysis

Γ ⊆ {<,>,≤,≥,=, ̸=}, so 26 cases.

Can restrict to Γ ⊆ {<,≤,=, ̸=}.

Lemma 1: If ≤ ∈ Γ, then MinCSP(Γ ∪ {=}) ≤FPT MinCSP(Γ).

Proof : Replace u = v with u ≤ v and v ≤ u. Opt deletes at most one.

Lemma 2: If ≤, ̸= ∈ Γ, then MinCSP(Γ ∪ {<}) ≤FPT MinCSP(Γ).

Proof : Replace u < v with u ≤ v and u ̸= v . Opt deletes at most one.

Lemmas 1 & 2 =⇒ MinCSP(<,≤,=, ̸=) ≤FPT MinCSP(≤, ̸=).

8

geoos58
Pencil

Classification: Case Analysis

Γ ⊆ {<,>,≤,≥,=, ̸=}, so 26 cases.

Can restrict to Γ ⊆ {<,≤,=, ̸=}.

Lemma 1: If ≤ ∈ Γ, then MinCSP(Γ ∪ {=}) ≤FPT MinCSP(Γ).

Proof : Replace u = v with u ≤ v and v ≤ u. Opt deletes at most one.

Lemma 2: If ≤, ̸= ∈ Γ, then MinCSP(Γ ∪ {<}) ≤FPT MinCSP(Γ).

Proof : Replace u < v with u ≤ v and u ̸= v . Opt deletes at most one.

Lemmas 1 & 2 =⇒ MinCSP(<,≤,=, ̸=) ≤FPT MinCSP(≤, ̸=).

8

Classification: Map

{<}

{<,=} {<,≤}{=, ̸=}

{<,=,≤}{<,=, ̸=}

{≤, ̸=}

MinCSP(≤, ̸=) is W[1]-hard.

MinCSP(<,=,≤) ≤FPT MinCSP(<,≤), which is FPT [CCHM].

MinCSP(<,=, ̸=) solved by reduction into Bundled Almost 2-Sat.

9

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm

9

Almost 2-Sat

Almost 2-Sat input is (V , C, k), where

• V is a set of variables,

• C is a set of constraints of the form (u ∨ v), (ū ∨ v̄) or (ū ∨ v),

• k is an integer.

Q: is there α : V → {0, 1} that breaks at most k constraints in C?

Almost 2-Sat is FPT [Razgon O’Sullivan ICALP’08→JCSS’09]

10

Bundled Almost 2-Sat

In Bundled Almost 2-Sat, constraints are 2-Sat formulas, e.g.:

1. (a ∨ b) ∧ (c̄ ∨ d̄)

2. (a→ b) ∧ (b → c) ∧ (c → d)

3. (a ∨ b) ∧ (ā ∨ b̄)

Theorem (Kim Kratsch Pilipczuk Wahlström SODA’23)

Bundled Almost 2-Sat is FPT3 if all formulas are 2K2-free.

3w.r.t. k + max formula length

11

Bundled Almost 2-Sat

In Bundled Almost 2-Sat, constraints are 2-Sat formulas, e.g.:

1. (a ∨ b) ∧ (c̄ ∨ d̄)

Edges {ab, cd}: not 2K2-free

2. (a→ b) ∧ (b → c) ∧ (c → d)

Edges {ab, bc, cd}: 2K2-free

3. (a ∨ b) ∧ (ā ∨ b̄)

Edges {ab}: 2K2-free

Theorem (Kim Kratsch Pilipczuk Wahlström SODA’23)

Bundled Almost 2-Sat is FPT3 if all formulas are 2K2-free.

3w.r.t. k + max formula length

11

Algorithm for MinCSP(<)

Iterative compression: X ⊆ V s.t. |X | ≤ k + 1 and G − X is acyclic.

12

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(<)

Let α : V → Q be opt. Guess α|X in 2O(k) time.

New goal: assign V \ X into |X |+ 1 buckets.

Introduce Boolean variables: v ∈ V (G) 7→ (v0, . . . , v|X |).

13

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(<)

Let α : V → Q be opt. Guess α|X in 2O(k) time.

New goal: assign V \ X into |X |+ 1 buckets.

Introduce Boolean variables: v ∈ V (G) 7→ (v0, . . . , v|X |).

Intepretation: vi = 1 iff bucket(v) ≥ i .

Ex: bucket(v) = 3, v 7→ (1, 1, 1, 1, 0, . . . , 0).

13

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(<)

Let α : V → Q be opt. Guess α|X in 2O(k) time.

New goal: assign V \ X into |X |+ 1 buckets.

Introduce Boolean variables: v ∈ V (G) 7→ (v0, . . . , v|X |).

For every arc (u, v) in G , add constraint∧
i<j

(ui ← uj) ∧
∧
i<j

(vi ← vj) ∧
∧
i≤j

(ui → vj).

13

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(=, ̸=)

Input: graph G , set T ⊆
(
V
2

)
, integer k .

Compression: X ⊆ V s.t. |X | ∈ O(k) and X cuts all st-paths for st ∈ T .

14

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(=, ̸=)

Let α : V → Q be opt. Guess α|X in 2O(k) time.

New goal: assign V \ X into |X |+ 1 buckets.

Introduce Boolean variables: v ∈ V (G) 7→ (v1, . . . , v|X |).

15

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(=, ̸=)

Let α : V → Q be opt. Guess α|X in 2O(k) time.

New goal: assign V \ X into |X |+ 1 buckets.

Introduce Boolean variables: v ∈ V (G) 7→ (v1, . . . , v|X |).

If bucket(v) = 0, then v 7→ (0, 0, 0, . . . , 0).

If bucket(v) = 2, then v 7→ (0, 1, 0, . . . , 0).

15

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(=, ̸=)

Let α : V → Q be opt. Guess α|X in 2O(k) time.

New goal: assign V \ X into |X |+ 1 buckets.

Introduce Boolean variables: v ∈ V (G) 7→ (v1, . . . , v|X |).

For every edge uv in G , add constraint∧
i<j

(ūi ∨ ūj) ∧
∧
i<j

(v̄i ∨ v̄j) ∧
∧
i

(ui → vi) ∧
∧
i

(vi → ui).

15

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Algorithm for MinCSP(<,=, ̸=)

Combine both encodings.

Crucial: component(v) = i =⇒ order(v) = i can be enforced in

2K2-free 2-Sat, not other way around:

00010000

11110000

16

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Highlight

geoos58
Pencil

geoos58
Pencil

Lower Bound

16

W[1]-hardness of Directed Symmetric Multicut

Directed Symmetric Multicut: given a digraph D, a set T ⊆
(
V
2

)
, and

k ∈ N, delete k arcs so that no pair in T is strongly connected.

Reduction from Multicolored Clique: given G with

V (G) = V1 ⊎ · · · ⊎ Vk , find a clique with one vertex in each Vi .

17

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Line

geoos58
Line

geoos58
Line

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

W[1]-hardness of Directed Symmetric Multicut

w

n

e

s

18

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

W[1]-hardness of Directed Symmetric Multicut

19

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

W[1]-hardness of Directed Symmetric Multicut

a1

a2

a3

a4

b1

b2

b3

b4

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

x12

y12

x13

y13

x14

y14

x15

y15

x16

y16
20

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

Conclusion

20

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Ex.: (x = y) ≡ ¬(x < y) ∧ ¬(x > y).

Ex.: Between(x , y , z) ≡ (x < y ∧ y < z) ∨ (z < y ∧ y < x).

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

geoos58
Rectangle

geoos58
Rectangle

geoos58
Pencil

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

geoos58
Rectangle

geoos58
Pencil

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Pencil

geoos58
Rectangle

geoos58
Pencil

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

geoos58
Rectangle

Conclusion

We classify parameterized complexity of MinCSP(Γ) for all

Γ ∈ {<,>,≤,≥,=, ̸=}.

Temporal relation is anything first-order definable using <

Project [KMPSW]: classifying all temporal MinCSPs.

Obstacle: Directed Symmetric Feedback Arc Set.

Obstacle: MinCSP((a < b) ∧ (c < d) ∧ (a ≤ d) ∧ (c ≤ b)).

Bigger obstacle: are there more obstacles? The CSP classification for

temporal languages has lots of cases. More general methods would help.

Thank you!

21

geoos58
Rectangle

