Solving Infinite-Domain CSPs Using the Patchwork Property

AAAI 2021

Konrad K. Dabrowski¹ Peter Jonsson² Sebastian Ordyniak³ *George Osipov*² ¹Durham University ²Linköping University

³University of Leeds

• Infinite-domain CSPs have many applications in AI, e.g. in spatial and temporal reasoning.

- Infinite-domain CSPs have many applications in AI, e.g. in spatial and temporal reasoning.
- Computationally, infinite-domain CSPs can be arbitrarily hard, so we seek restrictions that make them tractable.

- Infinite-domain CSPs have many applications in AI, e.g. in spatial and temporal reasoning.
- Computationally, infinite-domain CSPs can be arbitrarily hard, so we seek restrictions that make them tractable.
- We study infinite-domain CSPs parameterized by the *primal treewidth*.

- Infinite-domain CSPs have many applications in AI, e.g. in spatial and temporal reasoning.
- Computationally, infinite-domain CSPs can be arbitrarily hard, so we seek restrictions that make them tractable.
- We study infinite-domain CSPs parameterized by the *primal treewidth*.
- We identify the *patchwork property* as a sufficient condition for fixed-parameter tractability of infinite-domain CSPs.

- Infinite-domain CSPs have many applications in AI, e.g. in spatial and temporal reasoning.
- Computationally, infinite-domain CSPs can be arbitrarily hard, so we seek restrictions that make them tractable.
- We study infinite-domain CSPs parameterized by the *primal treewidth*.
- We identify the *patchwork property* as a sufficient condition for fixed-parameter tractability of infinite-domain CSPs.
- As a consequence, we obtain algorithms running in $f(w) \cdot O(n)$ time for CSPs over Allen's Interval Algebra, RCC8, etc.

- Infinite-domain CSPs have many applications in AI, e.g. in spatial and temporal reasoning.
- Computationally, infinite-domain CSPs can be arbitrarily hard, so we seek restrictions that make them tractable.
- We study infinite-domain CSPs parameterized by the *primal treewidth*.
- We identify the *patchwork property* as a sufficient condition for fixed-parameter tractability of infinite-domain CSPs.
- As a consequence, we obtain algorithms running in $f(w) \cdot O(n)$ time for CSPs over Allen's Interval Algebra, RCC8, etc.
- Connecting patchwork to *amalgamation*, we obtain results for temporal constraint satisfaction and phylogeny problems.

A constraint language consists of:

- a domain D,
- a set of relations $\{R_1, R_2, \ldots, R_m\}$, where $R_i \subseteq D^{arity(R_i)}$.

A constraint language consists of:

- a domain D,
- a set of relations $\{R_1, R_2, \ldots, R_m\}$, where $R_i \subseteq D^{arity(R_i)}$.

A constraint language is *k*-ary if all relations have arity *k*.

A constraint language consists of:

- a domain D,
- a set of relations $\{R_1, R_2, \ldots, R_m\}$, where $R_i \subseteq D^{arity(R_i)}$.

A constraint language is k-ary if all relations have arity k. The relations $\{R_1, R_2, \ldots, R_m\}$ are:

- jointly exhaustive (JE) if $\bigcup_{i=1}^{m} R_i = D^k$,
- pairwise disjoint (PD) if $R_i \cap R_j = \emptyset$.

 $CSP(\mathcal{B})$

INSTANCE: (V, C), V - variables, C - constraints of form $R(v_1, \ldots, v_r)$, where R is a relation from \mathcal{B} and $v_1, \ldots, v_r \in V$.

QUESTION: Is there an assignment f of values from to the domain of \mathcal{B} to the variables in V such that $(f(v_1), \ldots, f(v_r)) \in R$ for all constraints in C?

POINT ALGEBRA is binary constraint language with domain \mathbb{R} and relations $\{<, =, >\}$. We denote it by $(\mathbb{R}; <, =, >)$.

POINT ALGEBRA is binary constraint language with domain \mathbb{R} and relations $\{<, =, >\}$. We denote it by $(\mathbb{R}; <, =, >)$.

Relations of $(\mathbb{R}; <, =, >)$ are JEPD.

POINT ALGEBRA is binary constraint language with domain \mathbb{R} and relations $\{<,=,>\}$. We denote it by $(\mathbb{R};<,=,>)$.

Relations of $(\mathbb{R}; <, =, >)$ are JEPD.

An example of an instance of $CSP(\mathbb{R}; <, =, >)$:

$$V = \{x, y, z, w\}$$

$$C = \{x < y, y < z, x < z, y = w\}$$

POINT ALGEBRA is binary constraint language with domain \mathbb{R} and relations $\{<,=,>\}$. We denote it by $(\mathbb{R};<,=,>)$.

Relations of $(\mathbb{R}; <, =, >)$ are JEPD.

An example of an instance of $CSP(\mathbb{R}; <, =, >)$:

$$V = \{x, y, z, w\}$$

$$C = \{x < y, y < z, x < z, y = w\}$$

Solution: $f(x) = 1, f(y) = f(w) = 2, f(z) = 3.$

Constructing Constraint Languages

Let \mathcal{B} be a *k*-ary constraint language with JEPD relations.

 $\mathcal{B}^{\vee=}$ contains unions of all subsets of relations in \mathcal{B} .

Example: $(\mathbb{R}; <, =, >)^{\vee=}$ has relations $\{<, >, =, \leq, \neq, \geq, \top, \bot\}$.

Constructing Constraint Languages

Let \mathcal{B} be a *k*-ary constraint language with JEPD relations.

 $\mathcal{B}^{\vee=}$ contains unions of all subsets of relations in \mathcal{B} .

Example: $(\mathbb{R}; <, =, >)^{\vee=}$ has relations $\{<, >, =, \leq, \neq, \geq, \top, \bot\}$.

 $\langle \mathcal{B} \rangle_{\rm b}$ contains all relations definable using \mathcal{B} -formulas, i.e. logical formulas consisting of the relations in \mathcal{B} and symbols (,), \land , \lor , \neg .

Example: $\langle (\mathbb{R}; <, =, >) \rangle_{\mathrm{b}}$ contains the relation R_{between} defined as $\{(x, y, z) \in \mathbb{R}^3 \mid (x < y \land y < z) \lor (x > y \land y > z)\}.$

Constructing Constraint Languages

Let \mathcal{B} be a *k*-ary constraint language with JEPD relations.

 $\mathcal{B}^{\vee=}$ contains unions of all subsets of relations in \mathcal{B} .

Example: $(\mathbb{R}; <, =, >)^{\vee=}$ has relations $\{<, >, =, \leq, \neq, \geq, \top, \bot\}$.

 $\langle \mathcal{B} \rangle_{\rm b}$ contains all relations definable using \mathcal{B} -formulas, i.e. logical formulas consisting of the relations in \mathcal{B} and symbols (,), \land , \lor , \neg .

Example: $\langle (\mathbb{R}; <, =, >) \rangle_{\mathrm{b}}$ contains the relation R_{between} defined as $\{(x, y, z) \in \mathbb{R}^3 \mid (x < y \land y < z) \lor (x > y \land y > z)\}.$

$$\mathcal{B} \subsetneq \mathcal{B}^{\vee =} \subsetneq \langle \mathcal{B} \rangle_{\mathrm{b}}.$$

Let \mathcal{B} be a constraint language. Consider a finite $\Gamma \subseteq \langle \mathcal{B} \rangle_{\mathrm{b}}$.

Let \mathcal{B} be a constraint language. Consider a finite $\Gamma \subseteq \langle \mathcal{B} \rangle_{b}$. If \mathcal{B} has a *finite* domain, then we can enumerate all possible assignments $f: V \to D$ to an instance of CSP(Γ) in $|D|^{|V|}$ time.

- Let \mathcal{B} be a constraint language. Consider a finite $\Gamma \subseteq \langle \mathcal{B} \rangle_{\mathrm{b}}$.
- If \mathcal{B} has a *finite* domain, then we can enumerate all possible assignments $f: V \to D$ to an instance of $CSP(\Gamma)$ in $|D|^{|V|}$ time.

If ${\mathcal B}$ has an *infinite* domain, then we cannot enumerate all possible assignments in finite time.

- Let \mathcal{B} be a constraint language. Consider a finite $\Gamma \subseteq \langle \mathcal{B} \rangle_{b}$.
- If \mathcal{B} has a *finite* domain, then we can enumerate all possible assignments $f: V \to D$ to an instance of $CSP(\Gamma)$ in $|D|^{|V|}$ time.

If ${\mathcal B}$ has an *infinite* domain, then we cannot enumerate all possible assignments in finite time.

However, if \mathcal{B} is *k*-ary and has JEPD relations, then we can enumerate all **complete certificates**, i.e. all satisfiable instances of CSP(\mathcal{B}) with constraints over all *k*-tuples of variables in *V*.

Let $\Gamma \subseteq \langle (\mathbb{R}; <, =, >) \rangle_{b}$ be a constraint language. An instance of CSP(Γ) with 3 variables *x*, *y*, *z* has 13 complete certificates:

x = y,	X = Z,	y = z			
x = y,	X < Z,	<i>y</i> < <i>z</i>	X < Y,	X < Z,	<i>y</i> < <i>z</i>
x = y,	X > Z,	y > z	x < y,	X < Z,	<i>y</i> > <i>z</i>
x < y,	X = Z,	y > z	x > y,	X > Z,	<i>y</i> > <i>z</i>
x > y,	X = Z,	y < z	x > y,	X > Z,	<i>y</i> < <i>z</i>
x < y,	X < Z,	y = z	x < y,	X > Z,	<i>y</i> > <i>z</i>
x > y,	X > Z,	y = z	x > y,	X < Z,	<i>y</i> < <i>z</i>

Parameterized complexity studies the running time of algorithms with respect to a parameter $p \in \mathbb{N}$ and the input size n.

Parameterized complexity studies the running time of algorithms with respect to a parameter $p \in \mathbb{N}$ and the input size n.

A problem is in XP if it admits an algorithm of form $O(n^{f(p)})$. A problem is in FPT if it admits an algorithm of form $f(p) \cdot n^{O(1)}$. FPT \subsetneq XP. Parameterized complexity studies the running time of algorithms with respect to a parameter $p \in \mathbb{N}$ and the input size n.

A problem is in XP if it admits an algorithm of form $O(n^{f(p)})$. A problem is in FPT if it admits an algorithm of form $f(p) \cdot n^{O(1)}$. FPT \subsetneq XP.

We seek fpt algorithms for infinite-domain CSPs parameterized by the *primal treewidth*.

A primal graph associated with an instance (V, C) of CSP has variables V as vertices and an edge for every pair u, v iff u and vappear in the scope of a constraint in C. A primal graph associated with an instance (V, C) of CSP has variables V as vertices and an edge for every pair u, v iff u and vappear in the scope of a constraint in C.

Example: Primal graph of the instance (V, C) of $CSP(\mathbb{R}; <, =, >)$, where $V = \{x, y, z, w\}$ and $C = \{x < y, y < z, x < z, y = w\}$, is

Treewidth

A tree decomposition of a graph G is a tree T and a mapping $X: T \rightarrow 2^V$ such that:

- 1. If $(u, v) \in E(G)$, then there is $t \in V(T)$ such that $u, v \in X(t)$.
- 2. For every $v \in V(G)$, the nodes t such that $v \in X(t)$ induce a non-empty connected subtree.

A tree decomposition of G.

Treewidth

A tree decomposition of a graph G is a tree T and a mapping $X: T \rightarrow 2^V$ that satisfies conditions 1 & 2.

Width of (T, X) is the size of the largest X(t) minus one. Treewidth of G is the minimum width of a tree decomposition of G. *Primal treewidth* is the treewidth of the primal graph.

A tree decomposition of G.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

- 1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.
- 2. Enumerate $f_2 : \{C, D, E\} \rightarrow D$ that violate no constraints.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

- 1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.
- 2. Enumerate $f_2 : \{C, D, E\} \rightarrow D$ that violate no constraints.
- 3. Enumerate $f_3 : \{B, C, E\} \rightarrow D$ that violate no constraints.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

- 1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.
- 2. Enumerate $f_2 : \{C, D, E\} \rightarrow D$ that violate no constraints.
- 3. Enumerate $f_3 : \{B, C, E\} \rightarrow D$ that violate no constraints.

4. Remember f_3 only if there are f_1 , f_2 such that f_1 , f_2 , f_3 agree on common variables.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

- 1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.
- 2. Enumerate $f_2 : \{C, D, E\} \rightarrow D$ that violate no constraints.
- 3. Enumerate $f_3 : \{B, C, E\} \rightarrow D$ that violate no constraints.

4. Remember f_3 only if there are f_1 , f_2 such that f_1 , f_2 , f_3 agree on common variables.

We have enumerated $f : \{A, B, C, D, E\} \rightarrow D$ that violate no constraints.

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

- 1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.
- 2. Enumerate $f_2 : \{C, D, E\} \rightarrow D$ that violate no constraints.
- 3. Enumerate $f_3 : \{B, C, E\} \rightarrow D$ that violate no constraints.

4. Remember f_3 only if there are f_1 , f_2 such that f_1 , f_2 , f_3 agree on common variables.

We have enumerated $f : \{A, B, C, D, E\} \rightarrow D$ that violate no constraints.

Continue in the same vein ...

Proposition: Finite-domain CSPs are solvable in $f(w) \cdot n^{O(1)}$ time.

- 1. Enumerate $f_1 : \{A, B, C\} \rightarrow D$ that violate no constraints.
- 2. Enumerate $f_2 : \{C, D, E\} \rightarrow D$ that violate no constraints.
- 3. Enumerate $f_3 : \{B, C, E\} \rightarrow D$ that violate no constraints.

4. Remember f_3 only if there are f_1 , f_2 such that f_1 , f_2 , f_3 agree on common variables.

We have enumerated $f : \{A, B, C, D, E\} \rightarrow D$ that violate no constraints.

Continue in the same vein ...

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein

We should be able to:

- 1. enumerate assignments.
- 2. combine partial assignments.

We should be able to:

- 1. enumerate assignments.
- 2. combine partial assignments.

Q: How to avoid enumerating assignments?

We should be able to:

- 1. enumerate assignments.
- 2. combine partial assignments.

Q: How to avoid enumerating assignments? A: Enumerate certificates instead.

We should be able to:

- 1. enumerate assignments.
- 2. combine partial assignments.

Q: How to avoid enumerating assignments? A: Enumerate certificates instead.

Q: How to make step 2 sound?

We should be able to:

- 1. enumerate assignments.
- 2. combine partial assignments.

Q: How to avoid enumerating assignments? A: Enumerate certificates instead.

- Q: How to make step 2 sound?
- A: Require the patchwork property.

Definition: A JEPD constraint language \mathcal{B} has *patchwork property* if for every pair of complete satisfiable instances $I_1 = (V_1, C_1)$ and $I_2 = (V_2, C_2)$ of CSP(\mathcal{B}) such that $I_1[V_1 \cap V_2] = I_2[V_1 \cap V_2]$, the instance $(V_1 \cup V_2, C_1 \cup C_2)$ is also satisfiable.

Theorem: Let \mathcal{B} be a finite *k*-ary constraint language with JEPD relations and the patchwork property. Assume $CSP(\mathcal{B})$ is decidable. For any finite constraint language $\Gamma \subseteq \langle \mathcal{B} \rangle_{b}$, $CSP(\Gamma)$ is fpt.

Theorem: Let \mathcal{B} be a finite *k*-ary constraint language with JEPD relations and the patchwork property. Assume $CSP(\mathcal{B})$ is decidable. For any finite constraint language $\Gamma \subseteq \langle \mathcal{B} \rangle_{b}$, $CSP(\Gamma)$ is fpt.

More specifically, an instance of $CSP(\Gamma)$ is solvable in

$$au_{\mathcal{B}}(w+1)^2 \cdot w^k \cdot O(n)$$

time, where $\tau_{\mathcal{B}}$ is the time complexity of enumerating complete instances of CSP(\mathcal{B}).

POINT ALGEBRA (\mathbb{R} ; <, =, >) has patchwork property. $\tau(v) = 2^{O(v \log v)}$ (# ordered partitions of v elements). POINT ALGEBRA ($\mathbb{R}; <, =, >$) has patchwork property. $\tau(v) = 2^{O(v \log v)}$ (# ordered partitions of v elements).

Corollary: For every finite $\Gamma \subseteq \langle (\mathbb{R}; <, =, >) \rangle_{\mathrm{b}}$, CSP(Γ) is solvable in $2^{O(w \log w)} \cdot O(n)$ time.

POINT ALGEBRA ($\mathbb{R}; <, =, >$) has patchwork property. $\tau(v) = 2^{O(v \log v)}$ (# ordered partitions of v elements).

Corollary: For every finite $\Gamma \subseteq \langle (\mathbb{R}; <, =, >) \rangle_{\mathrm{b}}$, CSP(Γ) is solvable in $2^{O(w \log w)} \cdot O(n)$ time.

Corollary: For every finite $\Gamma \subseteq \langle (\mathbb{R}; <) \rangle_{fo}$, $CSP(\Gamma)$ is solvable in $2^{O(w \log w)} \cdot O(n)$ time.

Consequences: Allen's Interval Algebra

Basic relation		Example	Endpoints
/ precedes J	р	iii	$I^+ < J^-$
J preceded by I	p ⁻¹	jjj	
I meets J	m	iiii	$I^{+} = J^{-}$
J met-by I	m^{-1}	jjjj	
I overlaps J	0	iiii	$ I^{-} < J^{-} < I^{+},$
J overlby I	0-1	jjjj	$I^{+} < J^{+}$
I during J	d	iii	$I^- > J^-$,
J includes I	d^{-1}	jjjjjjj	$ I^+ < J^+$
I starts J	S	iii	$I^{-} = J^{-},$
J started by I	s ⁻¹	jjjjjjj	$I^+ < J^+$
I finishes J	f	iii	$I^+ = J^+,$
J finished by I	f ⁻ 1	jjjjjjj	$ I^{-} > J^{-}$
/ equals /	е	iiii	$I^{-} = J^{-},$
		jjjj	$I^{+} = J^{+}$

 $AIA \subseteq \langle (\mathbb{R}; <) \rangle_{fo} \implies CSP(\langle AIA \rangle_b) \text{ is solvable in } 2^{O(w \log w)} \cdot O(n).$

Consequences: RCC8

RCC8 has patchwork \implies CSP($(RCC8)_b$) is solvable in $2^{O(w^2)} \cdot O(n)$.

CSP can be thought of a homomorphism problem between relational structures. A homomorphism is a mapping $h : \mathcal{A} \to \mathcal{B}$ that preserves relations, i.e. if $(a_1, \ldots, a_r) \in \mathbb{R}^{\mathcal{A}}$, then $(h(a_1), \ldots, h(a_r)) \in \mathbb{R}^{\mathcal{B}}$.

CSP can be thought of a homomorphism problem between relational structures. A homomorphism is a mapping $h : \mathcal{A} \to \mathcal{B}$ that preserves relations, i.e. if $(a_1, \ldots, a_r) \in \mathbb{R}^{\mathcal{A}}$, then $(h(a_1), \ldots, h(a_r)) \in \mathbb{R}^{\mathcal{B}}$.

For example, CSP($\{0, 1, 2\}$; $\{\neq\}$) (aka GRAPH 3-COLORING) asks whether there is a homomorphism from an input graph *G* to K_3 .

From the model-theoretic point of view, \mathcal{B} has patchwork if it has the *amalgamation property* (AP).

Theorem: If \mathcal{B} is *homogeneous*, then it has AP.

Homogeneity has been verified for many relational structures.

 ω -categoricity is a more general property than homogeneity.

Bodisky & Dalmau have shown that $CSP(\Gamma)$ is in XP if $\Gamma \subseteq \langle \mathcal{B} \rangle_{\mathrm{b}}$ and \mathcal{B} is ω -categorical, i.e. solvable in $n^{f(w)}$ time for some computable f.

Question: Is there an ω -categorical relational structure \mathcal{B} such that CSP(\mathcal{B}) is in XP but not in FPT (under plausible complexity-theoretic assumptions)?

Thank you!