
Solving Infinite-Domain CSPs Using the
Patchwork Property
AAAI 2021

Konrad K. Dabrowski1 Peter Jonsson2 Sebastian Ordyniak3 George Osipov2

1Durham University

2Linköping University

3University of Leeds

Motivation and Overview

• Infinite-domain CSPs have many applications in AI, e.g. in spatial
and temporal reasoning.

• Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

• We study infinite-domain CSPs parameterized by the primal
treewidth.

• We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

• As a consequence, we obtain algorithms running in f(w) · O(n)
time for CSPs over Allen’s Interval Algebra, RCC8, etc.

• Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

1

Motivation and Overview

• Infinite-domain CSPs have many applications in AI, e.g. in spatial
and temporal reasoning.

• Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

• We study infinite-domain CSPs parameterized by the primal
treewidth.

• We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

• As a consequence, we obtain algorithms running in f(w) · O(n)
time for CSPs over Allen’s Interval Algebra, RCC8, etc.

• Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

1

Motivation and Overview

• Infinite-domain CSPs have many applications in AI, e.g. in spatial
and temporal reasoning.

• Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

• We study infinite-domain CSPs parameterized by the primal
treewidth.

• We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

• As a consequence, we obtain algorithms running in f(w) · O(n)
time for CSPs over Allen’s Interval Algebra, RCC8, etc.

• Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

1

Motivation and Overview

• Infinite-domain CSPs have many applications in AI, e.g. in spatial
and temporal reasoning.

• Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

• We study infinite-domain CSPs parameterized by the primal
treewidth.

• We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

• As a consequence, we obtain algorithms running in f(w) · O(n)
time for CSPs over Allen’s Interval Algebra, RCC8, etc.

• Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

1

Motivation and Overview

• Infinite-domain CSPs have many applications in AI, e.g. in spatial
and temporal reasoning.

• Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

• We study infinite-domain CSPs parameterized by the primal
treewidth.

• We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

• As a consequence, we obtain algorithms running in f(w) · O(n)
time for CSPs over Allen’s Interval Algebra, RCC8, etc.

• Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

1

Motivation and Overview

• Infinite-domain CSPs have many applications in AI, e.g. in spatial
and temporal reasoning.

• Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

• We study infinite-domain CSPs parameterized by the primal
treewidth.

• We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

• As a consequence, we obtain algorithms running in f(w) · O(n)
time for CSPs over Allen’s Interval Algebra, RCC8, etc.

• Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

1

Constraint Languages

A constraint language consists of:

• a domain D,
• a set of relations {R1,R2, . . . ,Rm}, where Ri ⊆ Darity(Ri).

A constraint language is k-ary if all relations have arity k.

The relations {R1,R2, . . . ,Rm} are:

• jointly exhaustive (JE) if
∪m
i=1 Ri = Dk,

• pairwise disjoint (PD) if Ri ∩ Rj = ∅.

2

Constraint Languages

A constraint language consists of:

• a domain D,
• a set of relations {R1,R2, . . . ,Rm}, where Ri ⊆ Darity(Ri).

A constraint language is k-ary if all relations have arity k.

The relations {R1,R2, . . . ,Rm} are:

• jointly exhaustive (JE) if
∪m
i=1 Ri = Dk,

• pairwise disjoint (PD) if Ri ∩ Rj = ∅.

2

Constraint Languages

A constraint language consists of:

• a domain D,
• a set of relations {R1,R2, . . . ,Rm}, where Ri ⊆ Darity(Ri).

A constraint language is k-ary if all relations have arity k.

The relations {R1,R2, . . . ,Rm} are:

• jointly exhaustive (JE) if
∪m
i=1 Ri = Dk,

• pairwise disjoint (PD) if Ri ∩ Rj = ∅.

2

Constraint Satisfaction Problem (CSP)

CSP(B)

INSTANCE: (V, C), V - variables, C - constraints of form R(v1, . . . , vr),
where R is a relation from B and v1, . . . , vr ∈ V.

QUESTION: Is there an assignment f of values from to the domain of B
to the variables in V such that (f(v1), . . . , f(vr)) ∈ R for all constraints
in C?

3

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=, >}. We denote it by (R;<,=, >).

Relations of (R;<,=, >) are JEPD.

An example of an instance of CSP(R;<,=, >):

V = {x, y, z,w}
C = {x < y, y < z, x < z, y = w}

Solution: f(x) = 1, f(y) = f(w) = 2, f(z) = 3.

4

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=, >}. We denote it by (R;<,=, >).

Relations of (R;<,=, >) are JEPD.

An example of an instance of CSP(R;<,=, >):

V = {x, y, z,w}
C = {x < y, y < z, x < z, y = w}

Solution: f(x) = 1, f(y) = f(w) = 2, f(z) = 3.

4

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=, >}. We denote it by (R;<,=, >).

Relations of (R;<,=, >) are JEPD.

An example of an instance of CSP(R;<,=, >):

V = {x, y, z,w}
C = {x < y, y < z, x < z, y = w}

Solution: f(x) = 1, f(y) = f(w) = 2, f(z) = 3.

4

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=, >}. We denote it by (R;<,=, >).

Relations of (R;<,=, >) are JEPD.

An example of an instance of CSP(R;<,=, >):

V = {x, y, z,w}
C = {x < y, y < z, x < z, y = w}

Solution: f(x) = 1, f(y) = f(w) = 2, f(z) = 3.

4

Constructing Constraint Languages

Let B be a k-ary constraint language with JEPD relations.

B∨= contains unions of all subsets of relations in B.

Example: (R;<,=, >)∨= has relations {<,>,=,≤, ̸=,≥,⊤,⊥}.

⟨B⟩b contains all relations definable using B-formulas, i.e. logical
formulas consisting of the relations in B and symbols (,),∧,∨,¬.

Example: ⟨(R;<,=, >)⟩b contains the relation Rbetween defined as
{(x, y, z) ∈ R3 | (x < y ∧ y < z) ∨ (x > y ∧ y > z)}.

B ⊊ B∨= ⊊ ⟨B⟩b.

5

Constructing Constraint Languages

Let B be a k-ary constraint language with JEPD relations.

B∨= contains unions of all subsets of relations in B.

Example: (R;<,=, >)∨= has relations {<,>,=,≤, ̸=,≥,⊤,⊥}.

⟨B⟩b contains all relations definable using B-formulas, i.e. logical
formulas consisting of the relations in B and symbols (,),∧,∨,¬.

Example: ⟨(R;<,=, >)⟩b contains the relation Rbetween defined as
{(x, y, z) ∈ R3 | (x < y ∧ y < z) ∨ (x > y ∧ y > z)}.

B ⊊ B∨= ⊊ ⟨B⟩b.

5

Constructing Constraint Languages

Let B be a k-ary constraint language with JEPD relations.

B∨= contains unions of all subsets of relations in B.

Example: (R;<,=, >)∨= has relations {<,>,=,≤, ̸=,≥,⊤,⊥}.

⟨B⟩b contains all relations definable using B-formulas, i.e. logical
formulas consisting of the relations in B and symbols (,),∧,∨,¬.

Example: ⟨(R;<,=, >)⟩b contains the relation Rbetween defined as
{(x, y, z) ∈ R3 | (x < y ∧ y < z) ∨ (x > y ∧ y > z)}.

B ⊊ B∨= ⊊ ⟨B⟩b.

5

Certificates: Motivation

Let B be a constraint language. Consider a finite Γ ⊆ ⟨B⟩b.

If B has a finite domain, then we can enumerate all possible
assignments f : V→ D to an instance of CSP(Γ) in |D||V| time.

If B has an infinite domain, then we cannot enumerate all possible
assignments in finite time.

However, if B is k-ary and has JEPD relations, then we can enumerate
all complete certificates, i.e. all satisfiable instances of CSP(B) with
constraints over all k-tuples of variables in V.

6

Certificates: Motivation

Let B be a constraint language. Consider a finite Γ ⊆ ⟨B⟩b.

If B has a finite domain, then we can enumerate all possible
assignments f : V→ D to an instance of CSP(Γ) in |D||V| time.

If B has an infinite domain, then we cannot enumerate all possible
assignments in finite time.

However, if B is k-ary and has JEPD relations, then we can enumerate
all complete certificates, i.e. all satisfiable instances of CSP(B) with
constraints over all k-tuples of variables in V.

6

Certificates: Motivation

Let B be a constraint language. Consider a finite Γ ⊆ ⟨B⟩b.

If B has a finite domain, then we can enumerate all possible
assignments f : V→ D to an instance of CSP(Γ) in |D||V| time.

If B has an infinite domain, then we cannot enumerate all possible
assignments in finite time.

However, if B is k-ary and has JEPD relations, then we can enumerate
all complete certificates, i.e. all satisfiable instances of CSP(B) with
constraints over all k-tuples of variables in V.

6

Certificates: Motivation

Let B be a constraint language. Consider a finite Γ ⊆ ⟨B⟩b.

If B has a finite domain, then we can enumerate all possible
assignments f : V→ D to an instance of CSP(Γ) in |D||V| time.

If B has an infinite domain, then we cannot enumerate all possible
assignments in finite time.

However, if B is k-ary and has JEPD relations, then we can enumerate
all complete certificates, i.e. all satisfiable instances of CSP(B) with
constraints over all k-tuples of variables in V.

6

Certificates: Example

Let Γ ⊆ ⟨(R;<,=, >)⟩b be a constraint language. An instance of
CSP(Γ) with 3 variables x, y, z has 13 complete certificates:

x = y, x = z, y = z
x = y, x < z, y < z
x = y, x > z, y > z
x < y, x = z, y > z
x > y, x = z, y < z
x < y, x < z, y = z
x > y, x > z, y = z

x < y, x < z, y < z
x < y, x < z, y > z
x > y, x > z, y > z
x > y, x > z, y < z
x < y, x > z, y > z
x > y, x < z, y < z

7

Parameterized Complexity

Parameterized complexity studies the running time of algorithms
with respect to a parameter p ∈ N and the input size n.

A problem is in XP if it admits an algorithm of form O(nf(p)).
A problem is in FPT if it admits an algorithm of form f(p) · nO(1).
FPT ⊊ XP.

We seek fpt algorithms for infinite-domain CSPs parameterized by
the primal treewidth.

8

Parameterized Complexity

Parameterized complexity studies the running time of algorithms
with respect to a parameter p ∈ N and the input size n.

A problem is in XP if it admits an algorithm of form O(nf(p)).
A problem is in FPT if it admits an algorithm of form f(p) · nO(1).
FPT ⊊ XP.

We seek fpt algorithms for infinite-domain CSPs parameterized by
the primal treewidth.

8

Parameterized Complexity

Parameterized complexity studies the running time of algorithms
with respect to a parameter p ∈ N and the input size n.

A problem is in XP if it admits an algorithm of form O(nf(p)).
A problem is in FPT if it admits an algorithm of form f(p) · nO(1).
FPT ⊊ XP.

We seek fpt algorithms for infinite-domain CSPs parameterized by
the primal treewidth.

8

Primal Graph

A primal graph associated with an instance (V, C) of CSP has
variables V as vertices and an edge for every pair u, v iff u and v
appear in the scope of a constraint in C.

Example: Primal graph of the instance (V, C) of CSP(R;<,=, >),
where V = {x, y, z,w} and C = {x < y, y < z, x < z, y = w}, is

x y

zw

9

Primal Graph

A primal graph associated with an instance (V, C) of CSP has
variables V as vertices and an edge for every pair u, v iff u and v
appear in the scope of a constraint in C.

Example: Primal graph of the instance (V, C) of CSP(R;<,=, >),
where V = {x, y, z,w} and C = {x < y, y < z, x < z, y = w}, is

x y

zw

9

Treewidth

A tree decomposition of a graph G is a tree T and a mapping
X : T→ 2V such that:

1. If (u, v) ∈ E(G), then there is t ∈ V(T) such that u, v ∈ X(t).
2. For every v ∈ V(G), the nodes t such that v ∈ X(t) induce a
non-empty connected subtree.

Graph G. A tree decomposition of G.

Image Credit: David Eppstein 10

Treewidth

A tree decomposition of a graph G is a tree T and a mapping
X : T→ 2V that satisfies conditions 1 & 2.

Width of (T, X) is the size of the largest X(t) minus one.
Treewidth of G is the minimum width of a tree decomposition of G.
Primal treewidth is the treewidth of the primal graph.

Graph G. A tree decomposition of G.

Image Credit: David Eppstein 10

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 11

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f(w) · nO(1) time.

1. Enumerate f1 : {A,B,C} → D
that violate no constraints.

2. Enumerate f2 : {C,D,E} → D
that violate no constraints.

3. Enumerate f3 : {B,C,E} → D
that violate no constraints.

4. Remember f3 only if there are f1, f2 such that f1, f2, f3 agree on
common variables.

We have enumerated f : {A,B,C,D,E} → D that violate no
constraints.

Continue in the same vein …

Can we extend this result to infinte-domain CSPs?
Image Credit: David Eppstein 11

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.
2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Q: How to make step 2 sound?
A: Require the patchwork property.

12

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.
2. combine partial assignments.

Q: How to avoid enumerating assignments?

A: Enumerate certificates instead.

Q: How to make step 2 sound?
A: Require the patchwork property.

12

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.
2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Q: How to make step 2 sound?
A: Require the patchwork property.

12

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.
2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Q: How to make step 2 sound?

A: Require the patchwork property.

12

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.
2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Q: How to make step 2 sound?
A: Require the patchwork property.

12

Patchwork: Definition

Definition: A JEPD constraint language B has patchwork property if
for every pair of complete satisfiable instances I1 = (V1, C1) and
I2 = (V2, C2) of CSP(B) such that I1[V1 ∩ V2] = I2[V1 ∩ V2], the instance
(V1 ∪ V2, C1 ∪ C2) is also satisfiable.

I1 I2agree

13

Fixed-Parameter Tractability

Theorem: Let B be a finite k-ary constraint language with JEPD
relations and the patchwork property. Assume CSP(B) is decidable.
For any finite constraint language Γ ⊆ ⟨B⟩b, CSP(Γ) is fpt.

More specifically, an instance of CSP(Γ) is solvable in

τB(w+ 1)2 · wk · O(n)

time, where τB is the time complexity of enumerating complete
instances of CSP(B).

14

Fixed-Parameter Tractability

Theorem: Let B be a finite k-ary constraint language with JEPD
relations and the patchwork property. Assume CSP(B) is decidable.
For any finite constraint language Γ ⊆ ⟨B⟩b, CSP(Γ) is fpt.

More specifically, an instance of CSP(Γ) is solvable in

τB(w+ 1)2 · wk · O(n)

time, where τB is the time complexity of enumerating complete
instances of CSP(B).

14

Consequences

POINT ALGEBRA (R;<,=, >) has patchwork property.
τ(v) = 2O(v log v) (# ordered partitions of v elements).

Corollary: For every finite Γ ⊆ ⟨(R;<,=, >)⟩b, CSP(Γ) is solvable in
2O(w log w) · O(n) time.

Corollary: For every finite Γ ⊆ ⟨(R;<)⟩fo, CSP(Γ) is solvable in
2O(w log w) · O(n) time.

15

Consequences

POINT ALGEBRA (R;<,=, >) has patchwork property.
τ(v) = 2O(v log v) (# ordered partitions of v elements).

Corollary: For every finite Γ ⊆ ⟨(R;<,=, >)⟩b, CSP(Γ) is solvable in
2O(w log w) · O(n) time.

Corollary: For every finite Γ ⊆ ⟨(R;<)⟩fo, CSP(Γ) is solvable in
2O(w log w) · O(n) time.

15

Consequences

POINT ALGEBRA (R;<,=, >) has patchwork property.
τ(v) = 2O(v log v) (# ordered partitions of v elements).

Corollary: For every finite Γ ⊆ ⟨(R;<,=, >)⟩b, CSP(Γ) is solvable in
2O(w log w) · O(n) time.

Corollary: For every finite Γ ⊆ ⟨(R;<)⟩fo, CSP(Γ) is solvable in
2O(w log w) · O(n) time.

15

Consequences: Allen’s Interval Algebra

Basic relation Example Endpoints
I precedes J p iii I+ < J−
J preceded by I p−1 jjj
I meets J m iiii I+ = J−
J met-by I m−1 jjjj
I overlaps J o iiii I− < J− < I+ ,
J overl.-by I o−1 jjjj I+ < J+

I during J d iii I− > J− ,
J includes I d−1 jjjjjjj I+ < J+

I starts J s iii I− = J− ,
J started by I s−1 jjjjjjj I+ < J+

I finishes J f iii I+ = J+ ,
J finished by I f−1 jjjjjjj I− > J−

I equals J e iiii I− = J− ,
jjjj I+ = J+

AIA ⊆ ⟨(R;<)⟩fo =⇒ CSP(⟨AIA⟩b) is solvable in 2O(w log w) · O(n).

16

Consequences: RCC8

X Y

EQ(X, Y)

X

Y

PO(X, Y)

X Y

NTPP(X, Y)

Y X

NTTP−1(X, Y)

X

Y

EC(X, Y)

X

Y

DC(X, Y)

X Y

TPP(X, Y)

Y X

TPP−1(X, Y)

RCC8 has patchwork =⇒ CSP(⟨RCC8⟩b) is solvable in 2O(w
2) · O(n).

17

Model-Theoretic Point of View

CSP can be thought of a homomorphism problem between relational
structures. A homomorphism is a mapping h : A → B that preserves
relations, i.e. if (a1, . . . ,ar) ∈ RA, then (h(a1), . . . ,h(ar)) ∈ RB .

For example, CSP({0, 1, 2}; {≠}) (aka GRAPH 3-COLORING) asks
whether there is a homomorphism from an input graph G to K3.

18

Model-Theoretic Point of View

CSP can be thought of a homomorphism problem between relational
structures. A homomorphism is a mapping h : A → B that preserves
relations, i.e. if (a1, . . . ,ar) ∈ RA, then (h(a1), . . . ,h(ar)) ∈ RB .

For example, CSP({0, 1, 2}; {≠}) (aka GRAPH 3-COLORING) asks
whether there is a homomorphism from an input graph G to K3.

18

Model-Theoretic Point of View

From the model-theoretic point of view, B has patchwork if it has the
amalgamation property (AP).

Theorem: If B is homogeneous, then it has AP.

Homogeneity has been verified for many relational structures.

19

Model-Theoretic Point of View

ω-categoricity is a more general property than homogeneity.

Bodisky & Dalmau have shown that CSP(Γ) is in XP if Γ ⊆ ⟨B⟩b and B
is ω-categorical, i.e. solvable in nf(w) time for some computable f.

Question: Is there an ω-categorical relational structure B such that
CSP(B) is in XP but not in FPT (under plausible
complexity-theoretic assumptions)?

20

Thank you!

20

