Solving Infinite-Domain CSPs Using the
Patchwork Property

AAAI 2021

Konrad K. Dabrowski' PeterJonsson? Sebastian Ordyniak® George Osipov?
"Durham University
2Linképing University

3University of Leeds

Motivation and Overview

- Infinite-domain CSPs have many applications in Al, e.g. in spatial
and temporal reasoning.

Motivation and Overview

- Infinite-domain CSPs have many applications in Al, e.g. in spatial
and temporal reasoning.

- Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

Motivation and Overview

- Infinite-domain CSPs have many applications in Al, e.g. in spatial
and temporal reasoning.

- Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

- We study infinite-domain CSPs parameterized by the primal
treewidth.

Motivation and Overview

- Infinite-domain CSPs have many applications in Al, e.g. in spatial
and temporal reasoning.

- Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

- We study infinite-domain CSPs parameterized by the primal
treewidth.

- We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

Motivation and Overview

- Infinite-domain CSPs have many applications in Al, e.g. in spatial
and temporal reasoning.

- Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

- We study infinite-domain CSPs parameterized by the primal
treewidth.

- We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

- As a consequence, we obtain algorithms running in f(w) - O(n)
time for CSPs over Allen’s Interval Algebra, RCCS, etc.

Motivation and Overview

- Infinite-domain CSPs have many applications in Al, e.g. in spatial
and temporal reasoning.

- Computationally, infinite-domain CSPs can be arbitrarily hard, so
we seek restrictions that make them tractable.

- We study infinite-domain CSPs parameterized by the primal
treewidth.

- We identify the patchwork property as a sufficient condition for
fixed-parameter tractability of infinite-domain CSPs.

- As a consequence, we obtain algorithms running in f(w) - O(n)
time for CSPs over Allen’s Interval Algebra, RCCS, etc.

- Connecting patchwork to amalgamation, we obtain results for
temporal constraint satisfaction and phylogeny problems.

Constraint Languages

A constraint language consists of:

- adomain D,

- a set of relations {R1, Rz, ..., R}, where R; C DYW(R),

Constraint Languages

A constraint language consists of:

- adomain D,

- a set of relations {R1, Rz, ..., R}, where R; C DYW(R),

A constraint language is k-ary if all relations have arity k.

Constraint Languages

A constraint language consists of:

- adomain D,

- a set of relations {Rq, Ry, ...,Rn}, where R; C DR,
A constraint language is k-ary if all relations have arity k.
The relations {R1, Ry, ..., Ry} are:

- jointly exhaustive (JE) if ", R; = D,

- pairwise disjoint (PD) if Ri N R; = @.

Constraint Satisfaction Problem (CSP)

CSP(B)
INSTANCE: (V,C), V - variables, C - constraints of form R(v4,...,V,),
where R is a relation from B and vq,...,v, € V.

QUESTION: Is there an assignment f of values from to the domain of B
to the variables in V such that (f(v1),...,f(v)) € R for all constraints
in C?

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=,>}. We denote it by (R; <, =, >).

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=,>}. We denote it by (R; <, =, >).

Relations of (R; <,=,>) are JEPD.

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=,>}. We denote it by (R; <, =, >).

Relations of (R; <,=,>) are JEPD.
An example of an instance of CSP(R; <, =, >):

V:{X?y7Z7W}
C={x<y,y<z,x<z,y=w}

Example: CSP over Point Algebra

POINT ALGEBRA is binary constraint language with domain R and
relations {<,=,>}. We denote it by (R; <, =, >).

Relations of (R; <,=,>) are JEPD.
An example of an instance of CSP(R; <, =, >):

V:{X3y7Z7W}
C={x<y,y<z,x<z,y=w}

Solution: f(x) = 1,f(y) = f(w) = 2,f(z) = 3.

Constructing Constraint Languages

Let B be a k-ary constraint language with JEPD relations.

BY= contains unions of all subsets of relations in B.

Example: (R; <,=,>)¥= has relations {<,>,=,<,#,>,T, L}

Constructing Constraint Languages

Let B be a k-ary constraint language with JEPD relations.

BY= contains unions of all subsets of relations in B.

Example: (R; <,=,>)¥= has relations {<,>,=,<,#,>,T, L}

(B)y, contains all relations definable using B-formulas, i.e. logical
formulas consisting of the relations in B and symbols (,), A, V, —.

Example: ((R; <,=,>))y, contains the relation Rypetween defined as
{,y,2) eR | (X<YyAYy<Z)V(X>YyAy>2)}

Constructing Constraint Languages

Let B be a k-ary constraint language with JEPD relations.

BY= contains unions of all subsets of relations in B.

Example: (R; <,=,>)¥= has relations {<,>,=,<,#,>,T, L}

(B)y, contains all relations definable using B-formulas, i.e. logical
formulas consisting of the relations in B and symbols (,), A, V, —.

Example: ((R; <,=,>))y, contains the relation Rypetween defined as
{,y,2) eR | (X<YyAYy<Z)V(X>YyAy>2)}

B C BY= ¢ (B)b.

Certificates: Motivation

Let B be a constraint language. Consider a finite I' C (B)y,

Certificates: Motivation

Let B be a constraint language. Consider a finite I' C (B)y,

If B has a finite domain, then we can enumerate all possible
assignments f: V — D to an instance of CSP(I') in |D|I! time.

Certificates: Motivation

Let B be a constraint language. Consider a finite I' C (B)y,

If B has a finite domain, then we can enumerate all possible
assignments f: V — D to an instance of CSP(I') in |D|I! time.

If B has an infinite domain, then we cannot enumerate all possible
assignments in finite time.

Certificates: Motivation

Let B be a constraint language. Consider a finite I' C (B)y,

If B has a finite domain, then we can enumerate all possible
assignments f: V — D to an instance of CSP(I') in |D|I! time.

If B has an infinite domain, then we cannot enumerate all possible
assignments in finite time.

However, if B is k-ary and has JEPD relations, then we can enumerate
all complete certificates, i.e. all satisfiable instances of CSP(B) with
constraints over all k-tuples of variables in V.

Certificates: Example

Let I C ((R; <,=,>))p be a constraint language. An instance of
CSP(I") with 3 variables x, y,z has 13 complete certificates:

X=y, x=2, y=z

X=Yy, X<z, y<z X<y, X<z, y<z
X=VY, X>2z, y>7Z X<V, X<z, y>7
X<V, X=2, y>7Z X>VY, X>2, y>7
X>Y, X=2z, y<z X>y, X>2z, y<z
X<V, X<z, y=1z X<V, X>2z2, y>7

X>Y, X>27, y=17 X>y, X<z, y<z

Parameterized Complexity

Parameterized complexity studies the running time of algorithms
with respect to a parameter p € N and the input size n.

Parameterized Complexity

Parameterized complexity studies the running time of algorithms
with respect to a parameter p € N and the input size n.

A problem is in XP if it admits an algorithm of form O(nf(P).

A problem is in FPT if it admits an algorithm of form f(p) - n°(.
FPT C XP.

Parameterized Complexity

Parameterized complexity studies the running time of algorithms
with respect to a parameter p € N and the input size n.

A problem is in XP if it admits an algorithm of form O(nf(P).

A problem is in FPT if it admits an algorithm of form f(p) - n°(.
FPT C XP.

We seek fpt algorithms for infinite-domain CSPs parameterized by
the primal treewidth.

Primal Graph

A primal graph associated with an instance (V, C) of CSP has
variables V as vertices and an edge for every pair u, v iff u and v
appear in the scope of a constraint in C.

Primal Graph

A primal graph associated with an instance (V, C) of CSP has
variables V as vertices and an edge for every pair u, v iff u and v
appear in the scope of a constraint in C.

Example: Primal graph of the instance (V, C) of CSP(R; <, =, >),
where V= {x,y,z,w}and C={x<y,y <z x<zy=w},is

Treewidth

A tree decomposition of a graph G is a tree T and a mapping
X: T — 2" such that:

1. 1f (u,v) € E(G), then there ist € V(T) such that u,v € X(t).

2. For every v € V(G), the nodes t such that v € X(t) induce a
non-empty connected subtree.

A tree decomposition of G.

Image Credit: David Eppstein 10

Treewidth

A tree decomposition of a graph G is a tree T and a mapping
X : T — 2" that satisfies conditions 1 & 2.

Width of (T, X) is the size of the largest X(t) minus one.
Treewidth of G is the minimum width of a tree decomposition of G.
Primal treewidth is the treewidth of the primal graph.

A tree decomposition of G.

Image Credit: David Eppstein 10

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.

2. Enumerate f, : {C,D,E} — D
that violate no constraints.

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.

2. Enumerate f, : {C,D,E} — D
that violate no constraints.

3. Enumerate f3 : {B,C,E} —» D
that violate no constraints.

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.

2. Enumerate f, : {C,D,E} — D
that violate no constraints.

3. Enumerate f3 : {B,C,E} —» D
that violate no constraints.

4. Remember f3 only if there are f;, f, such that fy, f2, f3 agree on
common variables.

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.

2. Enumerate f, : {C,D,E} — D
that violate no constraints.
3. Enumerate f3 : {B,C,E} —» D
that violate no constraints.
4. Remember f3 only if there are f;, f, such that fy, f2, f3 agree on
common variables.

We have enumerated f: {A,B,C,D,E} — D that violate no
constraints.

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.
2. Enumerate f, : {C,D,E} — D
that violate no constraints.
3. Enumerate f3 : {B,C,E} —» D
that violate no constraints.
4. Remember f3 only if there are f;, f, such that fy, f2, f3 agree on
common variables.

We have enumerated f: {A,B,C,D,E} — D that violate no
constraints.

Continue in the same vein ...

Image Credit: David Eppstein 1

Patchwork: Motivation

Proposition: Finite-domain CSPs are solvable in f{w) - n°" time.

1. Enumerate f; : {A,B,C} — D
that violate no constraints.
2. Enumerate f, : {C,D,E} — D
that violate no constraints.
3. Enumerate f3 : {B,C,E} —» D
that violate no constraints.
4. Remember f3 only if there are f;, f, such that fy, f2, f3 agree on
common variables.

We have enumerated f: {A,B,C,D,E} — D that violate no
constraints.

Continue in the same vein ...

Can we extend this result to infinte-domain CSPs?

Image Credit: David Eppstein 1

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.

2. combine partial assignments.

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.

2. combine partial assignments.

Q: How to avoid enumerating assignments?

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?

We should be able to:

1. enumerate assignments.

2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?
We should be able to:

1. enumerate assignments.

2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Q: How to make step 2 sound?

Patchwork: Motivation

Can we extend this result to infinte-domain CSPs?
We should be able to:

1. enumerate assignments.

2. combine partial assignments.

Q: How to avoid enumerating assignments?
A: Enumerate certificates instead.

Q: How to make step 2 sound?
A: Require the patchwork property.

Patchwork: Definition

Definition: A JEPD constraint language B has patchwork property if
for every pair of complete satisfiable instances I, = (V4, C;) and

I, = (V,, G) of CSP(B) such that I1[V; N V5] = L[V4 N V5], the instance
(ViU V,, G U G) is also satisfiable.

agree

Fixed-Parameter Tractability

Theorem: Let B be a finite k-ary constraint language with JEPD
relations and the patchwork property. Assume CSP(B) is decidable.
For any finite constraint language I' C (B)y,, CSP(I) is fpt.

14

Fixed-Parameter Tractability

Theorem: Let B be a finite k-ary constraint language with JEPD
relations and the patchwork property. Assume CSP(B) is decidable.
For any finite constraint language I' C (B)y,, CSP(I) is fpt.

More specifically, an instance of CSP(T) is solvable in
(W +1)%-wk-0(n)

time, where 7 is the time complexity of enumerating complete
instances of CSP(B).

14

Consequences

POINT ALGEBRA (R; <, =,>) has patchwork property.
7(v) = 2°(vl¢V) (# ordered partitions of v elements).

Consequences

POINT ALGEBRA (R; <, =,>) has patchwork property.
7(v) = 2°(vl¢V) (# ordered partitions of v elements).

Corollary: For every finite I' C ((R; <,=,>))p,, CSP(I') is solvable in
20wlogw) . O(n) time.

Consequences

POINT ALGEBRA (R; <, =,>) has patchwork property.
7(v) = 2°(vl¢V) (# ordered partitions of v elements).

Corollary: For every finite I' C ((R; <,=,>))p,, CSP(I') is solvable in
20wlogw) . O(n) time.

Corollary: For every finite I' € ((R; <)), CSP(I') is solvable in
20(wlogw) . O(n) time.

Consequences: Allen’s Interval Algebra

[Basic relation Example [Endpoints
| precedes J p iii T <=
Jpreceded byl p b33]
| meets | m iiii =Y
J met-by | m " 3iii
| overlaps J 0 iiii 1= <) <,
Joverl-by | o | jjji T <t
I during J d iii = >,
Jincludes | d-" 3333333 > <
| starts J S iii - =),
| started by | g U Jjjjiii T <t
[finishes J f iii + =t
J finished by | f=1 j3ijiii = >J
I equals J e iiii I~ =/,

3iis =/

ATA C ((R; <))t = CSP({ATIA)},) is solvable in 20("1g%) . O(n).

16

Consequences: RCC8

>

// N
i A
, \

\
! |
| Vv |
\ !
8 7
N ’
~

/ \
!\ y l!
EQ(X, Y) PO(X, Y) NTPP(X,) NTTP=(X, Y)
@ : / \ \\
/ \
> 2=y Y |
/ \ / \ A\ /
LY Y \)
EC(X,Y) DC(X, Y) TPP(X, Y) TPP=1(X, Y)

RCC8 has patchwork = CSP({RCCS8)}) is solvable in 200*) . O(n).

Model-Theoretic Point of View

CSP can be thought of a homomorphism problem between relational
structures. A homomorphism is a mapping h : A — B that preserves
relations, i.e. if (ai,...,a;) € RA, then (h(ay),...,h(a,)) € RE.

Model-Theoretic Point of View

CSP can be thought of a homomorphism problem between relational
structures. A homomorphism is a mapping h : A — B that preserves
relations, i.e. if (ai,...,a;) € RA, then (h(ay),...,h(a,)) € RE.

For example, CSP({0,1,2}; {#}) (aka GRAPH 3-COLORING) asks
whether there is a homomorphism from an input graph G to Ks.

A

Model-Theoretic Point of View

From the model-theoretic point of view, B has patchwork if it has the
amalgamation property (AP).
Theorem: If B is homogeneous, then it has AP.

Homogeneity has been verified for many relational structures.

19

Model-Theoretic Point of View

w-categoricity is a more general property than homogeneity.

Bodisky & Dalmau have shown that CSP(T') is in XP if ' C (B), and B
is w-categorical, i.e. solvable in) time for some computable f.

Question: Is there an w-categorical relational structure B such that
CSP(B) is in XP but not in FPT (under plausible
complexity-theoretic assumptions)?

20

Thank you!

