

Parameterized Approximability of Modular Linear Equations

Joint work with

- Konrad K Dabrowski (Newcastle University, UK)
- Peter Jonsson (Linköping University, Sweden)
- Sebastian Ordyniak (University of Leeds, UK)
- George Osipov (University of Oxford, UK)
- Magnus Wahlström (Royal Holloway, University of London, UK)

Systems of Linear Equations over a Ring

$$2x - y = 1$$

$$x + y = 5$$

$$-2y + z = 2$$

$$2y + w = 2$$

$$2z + w = 4$$

Is it satisfiable?

Solvable in polynomial time over

- the rational, i.e. Q,
- any finite field, i.e. \mathbb{F}_p ,
- the integers, i.e. \mathbb{Z} ,
- the integers modulo any m, i.e. \mathbb{Z}_m , ...

Systems of Linear Equations over a Ring Optimization Problem

Min-d-Lin(R)

Instance: (X, \mathcal{E}) , where

X is the variable set,

 \mathscr{E} is a (multi)set of equations, each with at most d variables.

Goal: Find an assignment $\alpha: X \to R$ of minimum cost.

(cost of α is the number of violated equations in \mathscr{E})

Systems of Linear Equations over a Ring Classical Complexity

Min-2-Lin(R) for any nontrivial ring R (e.g., \mathbb{Z}_2) is

- NP-hard,
- UGC-hard to approximate within any constant factor.

Min-3-Lin(R) is NP-hard to approximate within any constant factor (UGC-free).

Systems of Linear Equations over a Ring Classical Complexity

Min-2-Lin(R) for any nontrivial ring R (e.g., \mathbb{Z}_2) is

- NP-hard,
- UGC-hard to approximate within any constant factor.

Min-3-Lin(R) is NP-hard to approximate within any constant factor (UGC-free).

What about parameterized complexity?

Systems of Linear Equations over a Ring Parameterized Setting

Min-d-Lin(R)

Instance: (X, \mathcal{E}, k)

Parameter: k

Decide: is there $\alpha: X \to R$ of cost at most k?

Equivalently: can we delete k equations from \mathscr{E} to make it satisfiable?

Systems of Linear Equations over a Ring

Parameterized Complexity

W[1]-hard cases:

• d = 3 [CGJY'13, DJOOW'23]

• $d = 2, R = \mathbb{Z}_6$ [DJOOW'23]

FPT for d = 2 and

•
$$R = \mathbb{Z}_2$$
 [RSV'04, CGJY'13]

•
$$R = \mathbb{Z}_p$$
 [CCHPP'16]

•
$$R = \mathbb{Q}$$
, $R = \mathbb{Z}$ [DJOOW'23]

Open for d=2

$$\cdot R = \mathbb{Z}_4$$

$$\cdot R = \mathbb{Z}_8$$

$$\cdot R = \mathbb{Z}_9$$

•

•
$$R = \mathbb{Z}_{p^n}$$
, $n \geq 2$

RSV'04 [Reed, Smith, Vetta *OPL'04*]
CGJY'13 [Crowston, Gutin, Jones, Yeo *TOCS'13*]
CCHPP'16 [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk *SICOMP'16*]
DJOOW'23 [Dabrowsi, Jonsson, Ordyniak, Osipov, Wahlström *SODA'23*]

Modular Linear Equations

Parameterized Complexity

 $Min-2-Lin(\mathbb{Z}_m)$

- FPT if m is a prime (\mathbb{Z}_m is a field)
- W[1]-hard if m has ≥ 2 prime factors (\mathbb{Z}_m is a product ring)
- FPT status open when $m=p^n$, $n\geq 2$

Modular Linear Equations

Parameterized Complexity

 $Min-2-Lin(\mathbb{Z}_m)$

- FPT if m is a prime (\mathbb{Z}_m is a field)
- W[1]-hard if m has ≥ 2 prime factors (\mathbb{Z}_m is a product ring)
- FPT status open when $m = p^n$, $n \ge 2$

Can we at least approximate Min-2-Lin(\mathbb{Z}_m) in FPT time?

Our Results

Theorem: Min-2-Lin(\mathbb{Z}_{p^n}) is 2-approximable in FPT time.

Theorem: Min-2-Lin(\mathbb{Z}_m) is $2\omega(m)$ -approximable in FPT time.

* $\omega(m)$ is the number of distinct prime factors of m.

E.g., Min-2-Lin(\mathbb{Z}_{36}) is 4-approximable in FPT time.

Warm-Up: Algorithm for Fields

An FPT 2-approximation for Min-2-Lin(\mathbb{Z}_5):

- 1) Iterative compression, branching and homogenization reduce to instances where every equation is of the form:
- x = a (for some variable x and value $a \in \mathbb{Z}_5$) or
- ax = by (for some variables x, y and values $a, b \in \mathbb{Z}_5$)
- 2) Formulate as a graph cut problem and solve it (approximately).

Warm-Up: Algorithm for Fields

$$X = \{x, y, z\}$$
 $\mathcal{E} = \{x = 2, z = 0, 2x = y, 3y = 2z\}$

 (x_1)

 y_1

 (z_1)

 (x_2)

 y_2

 (z_2)

 (x_4)

 y_4

 (z_4)

$$X = \{x, y, z\}$$
 $\mathcal{E} = \{x = 2, z = 0, 2x = y, 3y = 2z\}$

$$x_1$$

$$x_2$$

$$x_3$$

$$y_3$$

$$x_3$$

$$x_4$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_4$$

$$x_5$$

$$x_5$$

$$x_6$$

$$x_7$$

$$x_8$$

$$x_8$$

$$X = \{x, y, z\}$$
 $\mathscr{E} = \{\underline{x} = 2, z = 0, 2x = y, 3y = 2z\}$

$$x_1$$

$$x_2$$

$$x_2$$

$$x_3$$

$$x_3$$

$$x_4$$

$$X = \{x, y, z\}$$
 $\mathscr{E} = \{x = 2, z = 0, 2x = y, 3y = 2z\}$

$$x_1$$

$$x_2$$

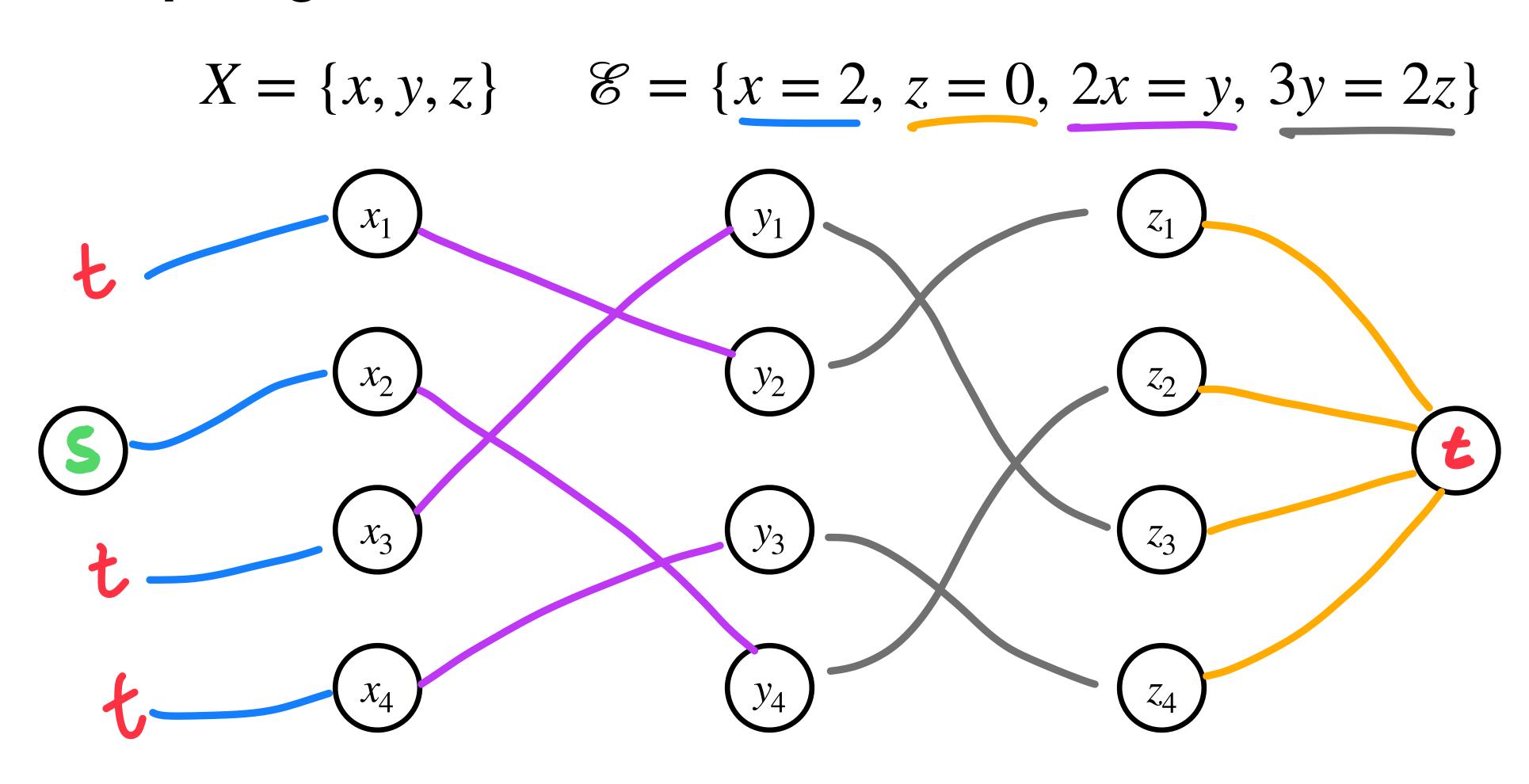
$$x_2$$

$$x_3$$

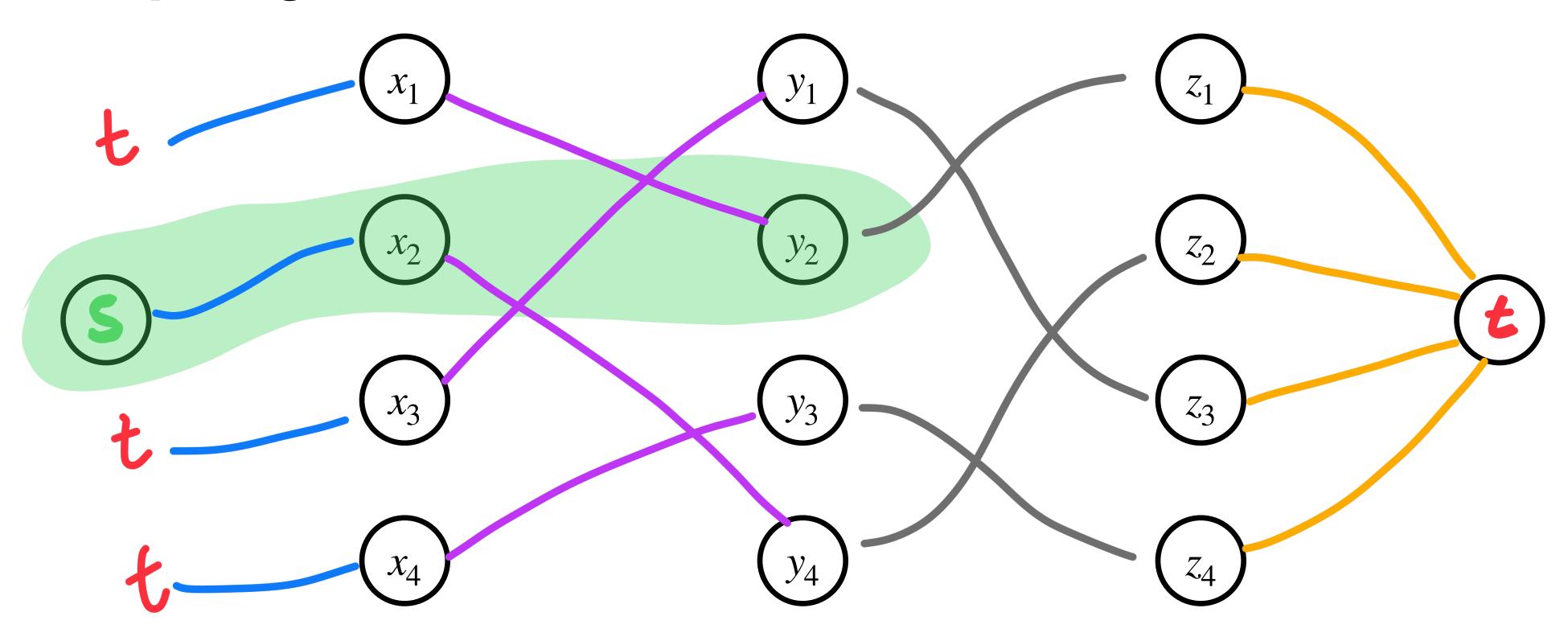
$$x_3$$

$$x_4$$

$$X = \{x, y, z\}$$
 $\mathscr{E} = \{x = 2, z = 0, 2x = y, 3y = 2z\}$
 x_1
 x_2
 x_2
 x_3
 x_4
 x_4

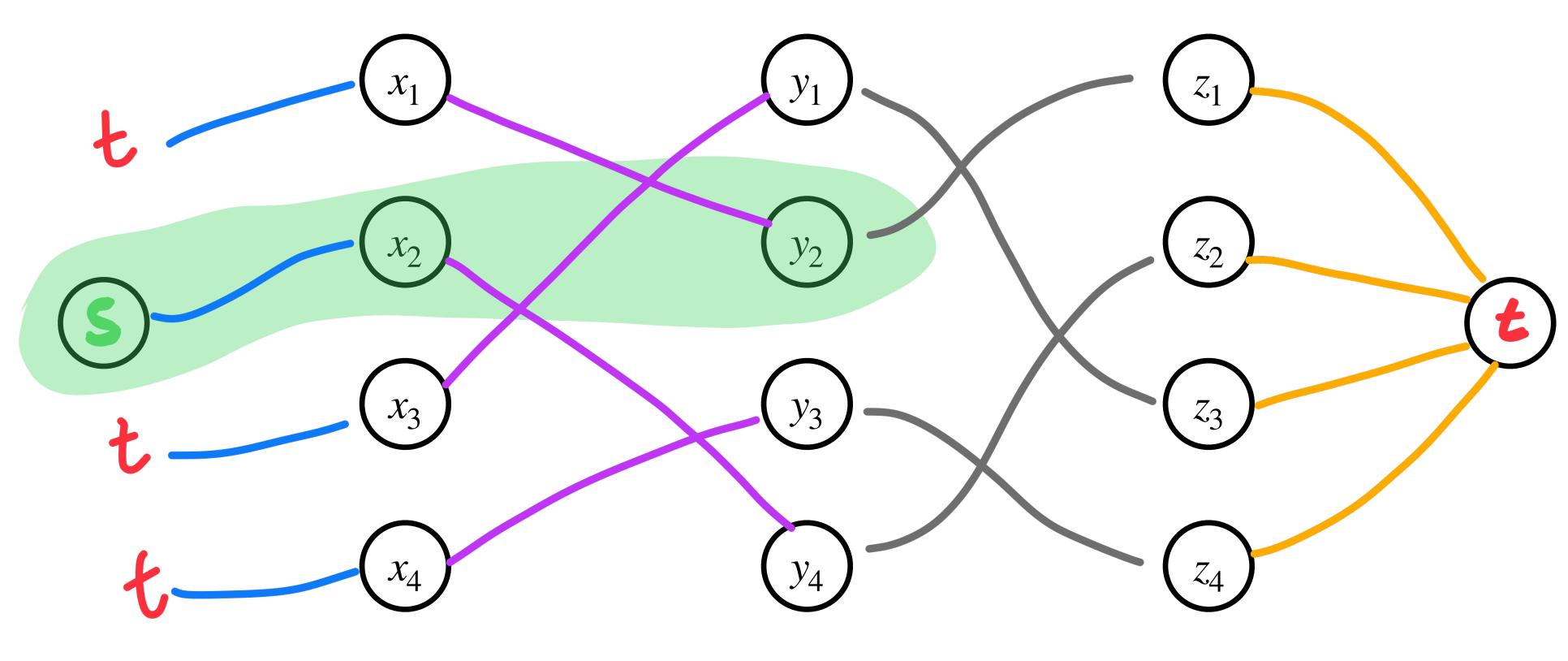


Warm-Up: Algorithm for Fields



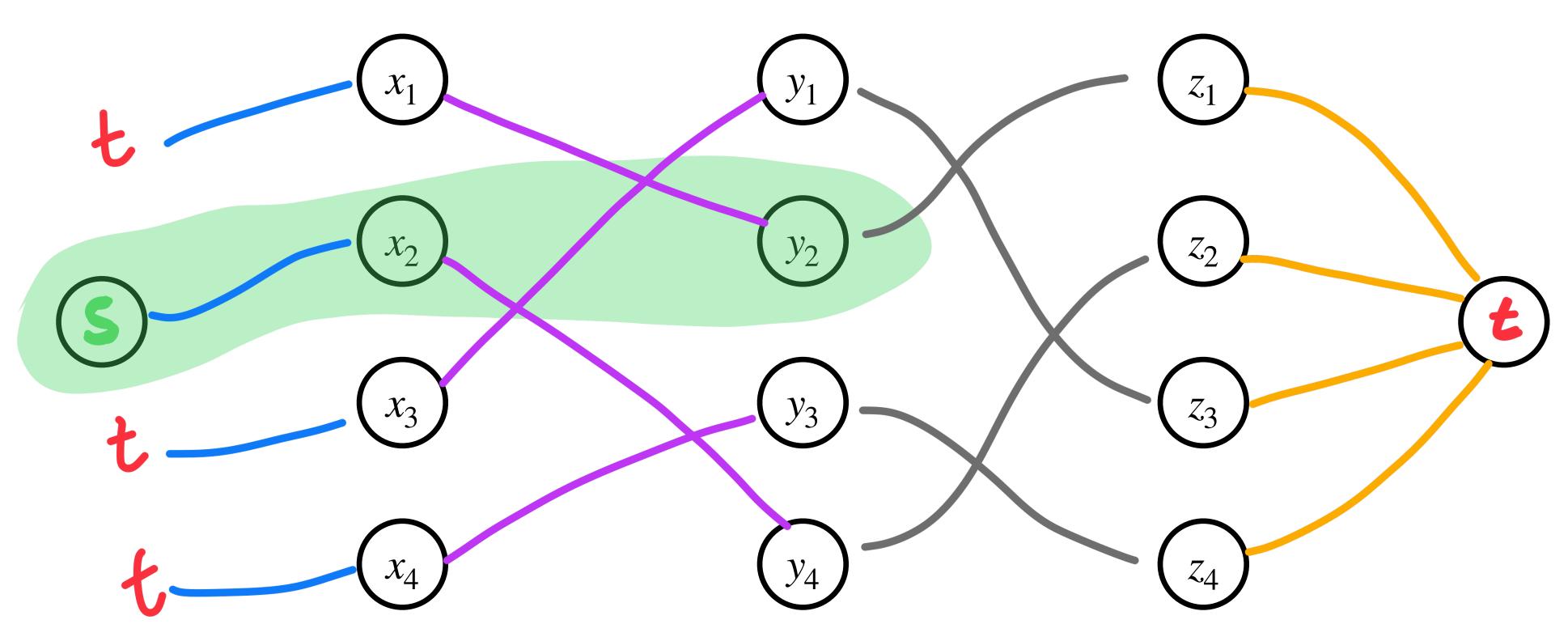
G = (V, E). A *st*-cut $S \subseteq V$ is **conformal** $\forall v \in X$, at most one $v_a \in S$.

Warm-Up: Algorithm for Fields



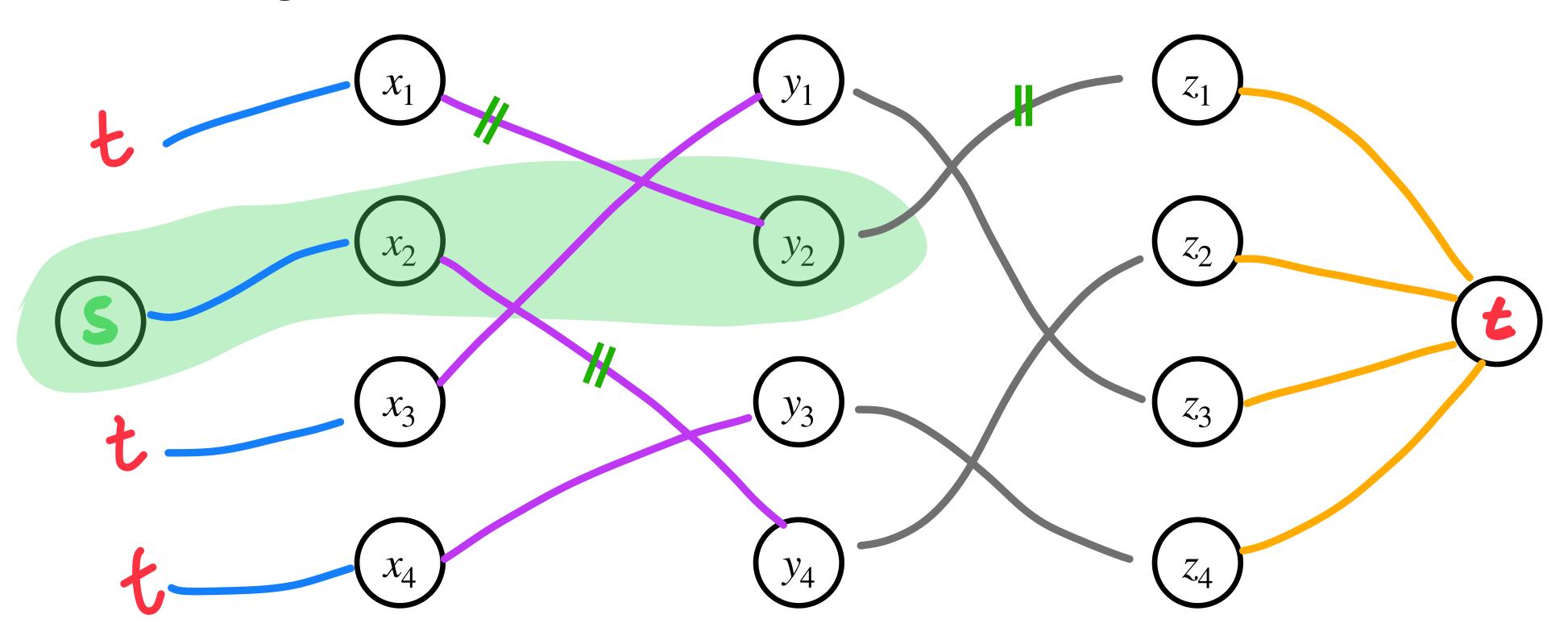
Assignments $\alpha: X \to R$

conformal st-cuts in G



$$\alpha(x) = 2$$
, $\alpha(y) = 2$, $\alpha(z) = 0 \longrightarrow \text{conformal } st\text{-cut } S_{\alpha} = \{s, x_2, y_2\}$

Warm-Up: Algorithm for Fields



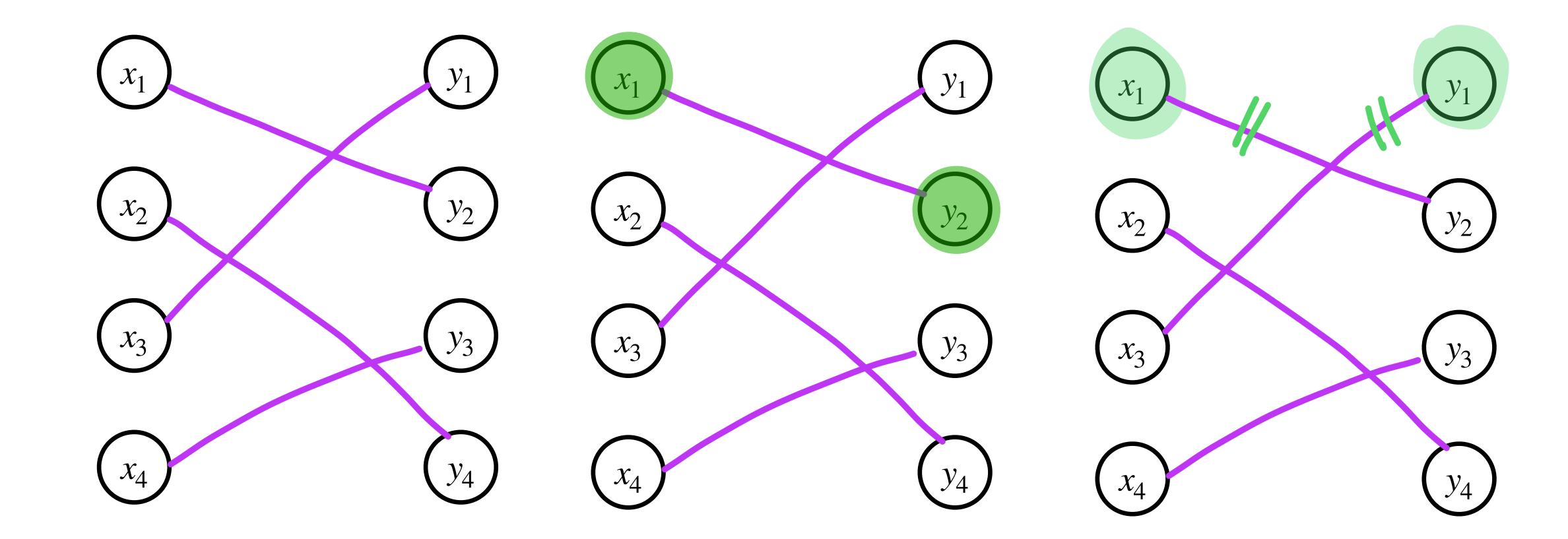
Let $\delta(S)$ be the edges cut by S

Key Lemma: $|\delta(S_{\alpha})| \leq 2 \cdot \text{cost}(\alpha)$

FPT Approximation for Fields

Warm-Up: Algorithm for Fields

Key Lemma: $|\delta(S_{\alpha})| \leq 2 \cdot \text{cost}(\alpha)$.



FPT Approximation for Fields

Blueprint

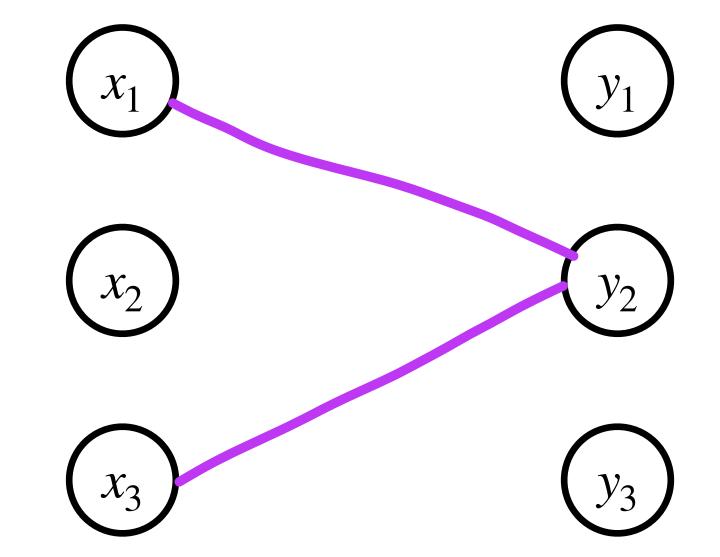
An FPT 2-approximation for Min-2-Lin(\mathbb{Z}_p):

- 1) Iterative compression, branching and homogenization ...
- 2) Construct the graph G.
- 3) Find a conformal st-cut S with $|\delta(S)| \le 2k$ using DPC^1 branching.
- 4) Construct an assignment from S and return it.

DPC = Digraph Pair Cut [KW JACM'20]

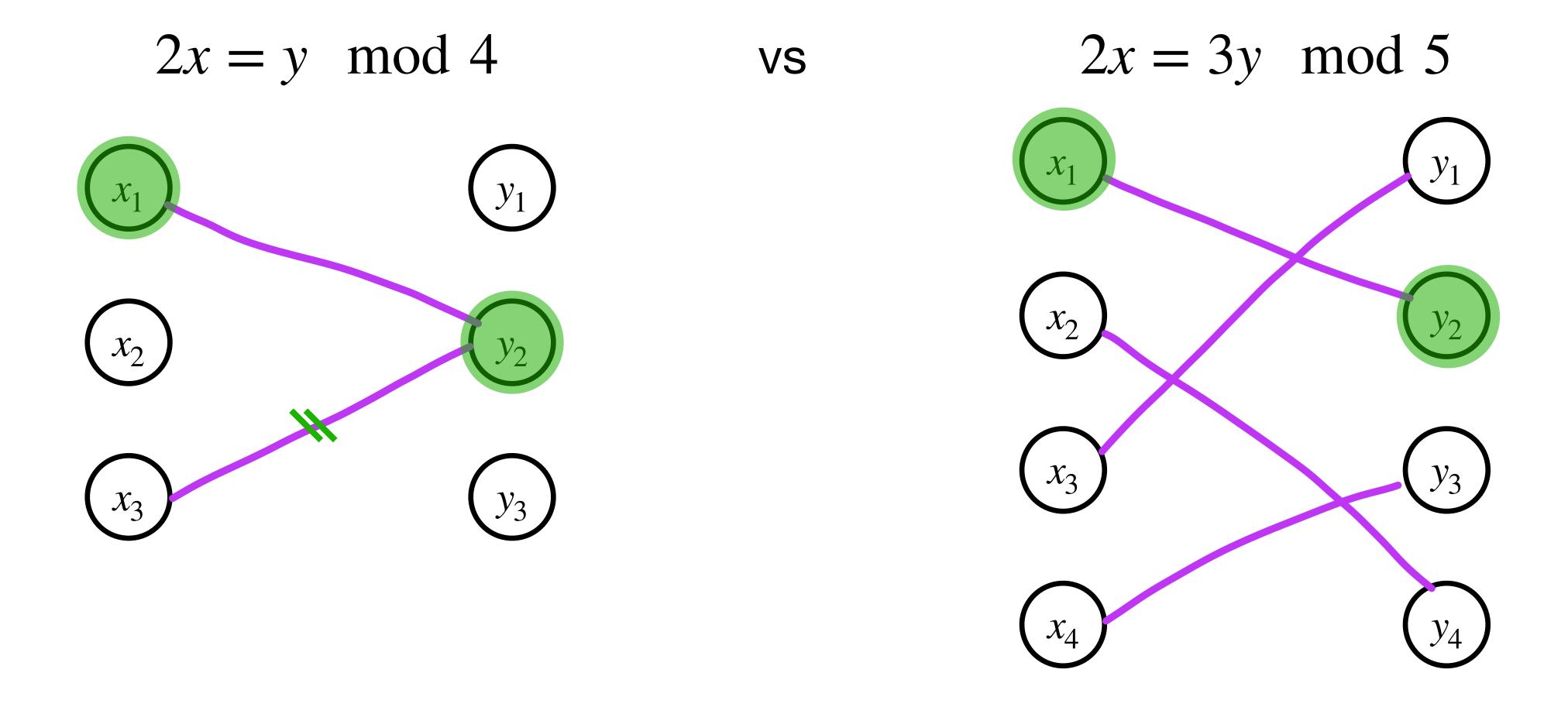
What goes wrong

Consider an equation $2x = y \mod 4$



A constraint is no longer a matching...

What goes wrong



Create vertices x_C for sets of values $C \subseteq \mathbb{Z}_{p^n}$ rather than single values.

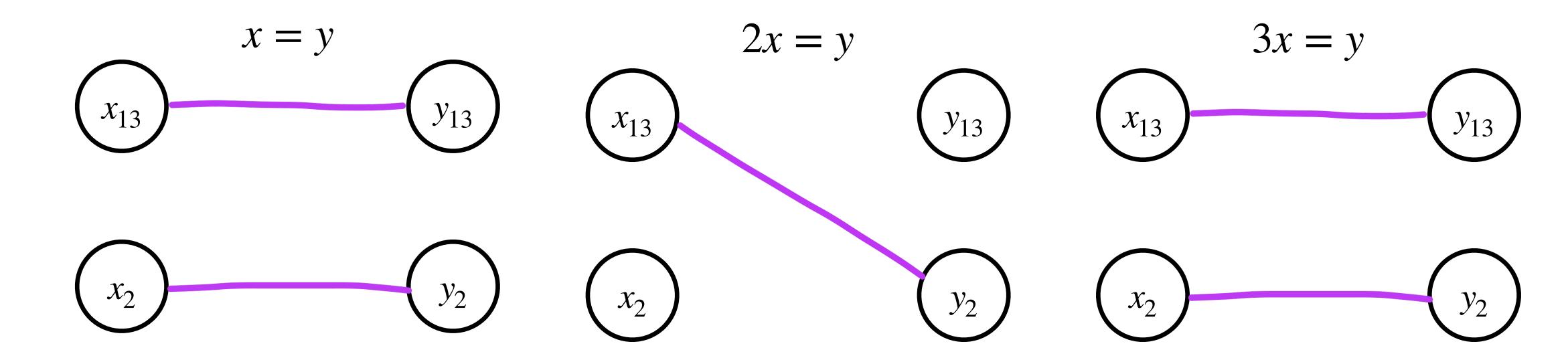
Classes are chosen to

- 1) preserve matching structure of constraints, and
- 2) allow recursion:

$$\mathbb{Z}_{p^n} \to \mathbb{Z}_{p^{n-1}} \to \mathbb{Z}_{p^{n-2}} \to \dots \to \mathbb{Z}_p$$

Matching structure

 \mathbb{Z}_4 classes: $\{0\}$, $\{1,3\}$, $\{2\}$.



Edges form a matching again!

Recursive step

Consider an equation $3x = y \mod 4$.

Our *class* assignment: $x \rightarrow \{1,3\}, y \rightarrow \{1,3\}.$

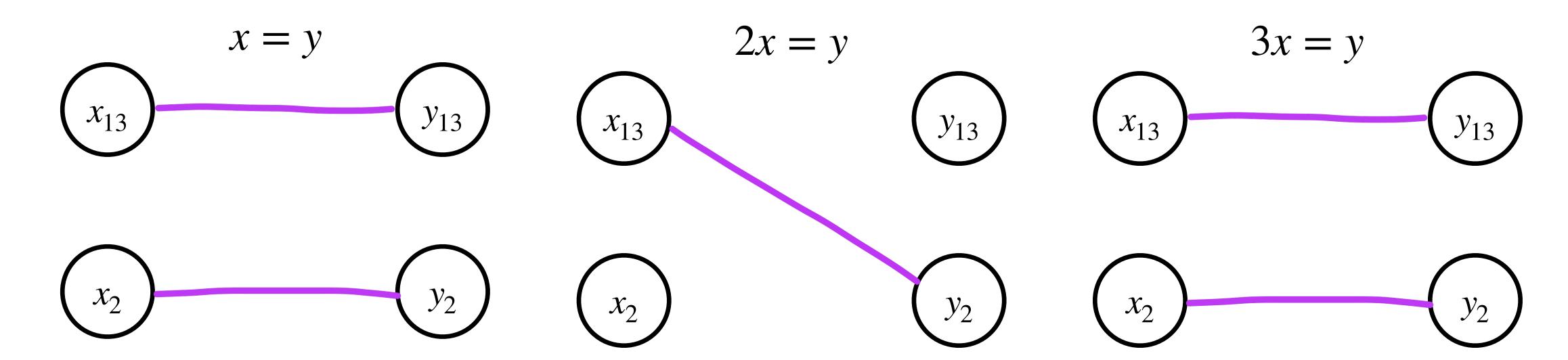
Rewrite into \mathbb{Z}_2 :

$$\cdot x = 2x' + 1, y = 2y' + 1$$

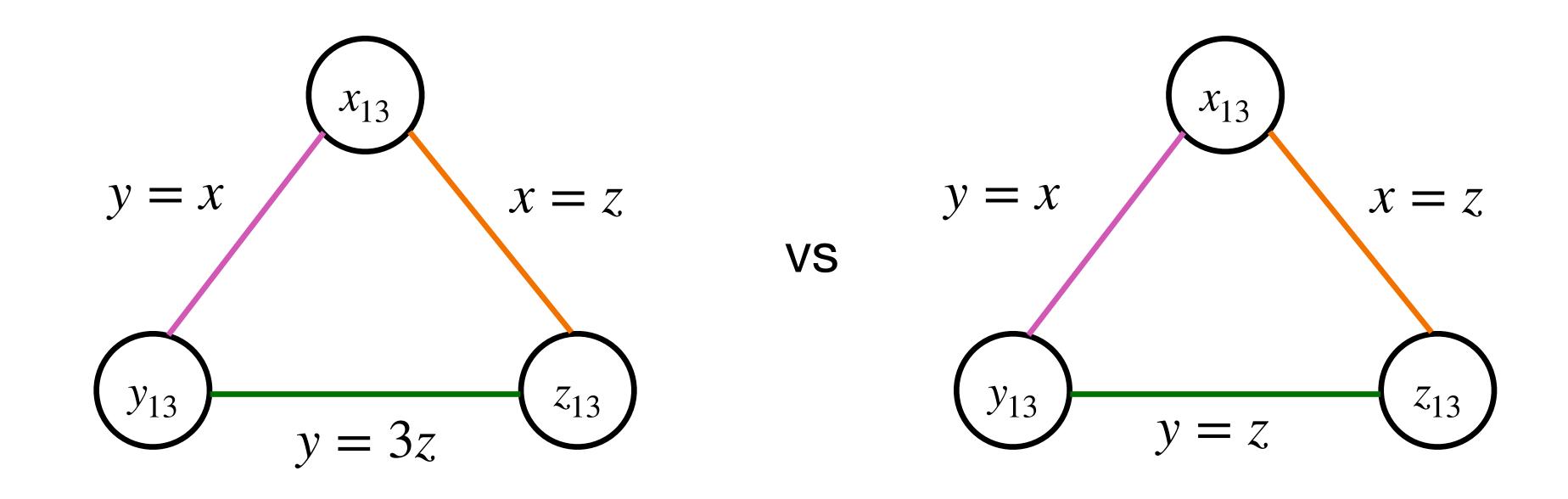
• $3x = y \mod 4 \iff 2x' = 2y' + 2 \mod 4 \iff x' = y' + 1 \mod 2$.

Information lost?

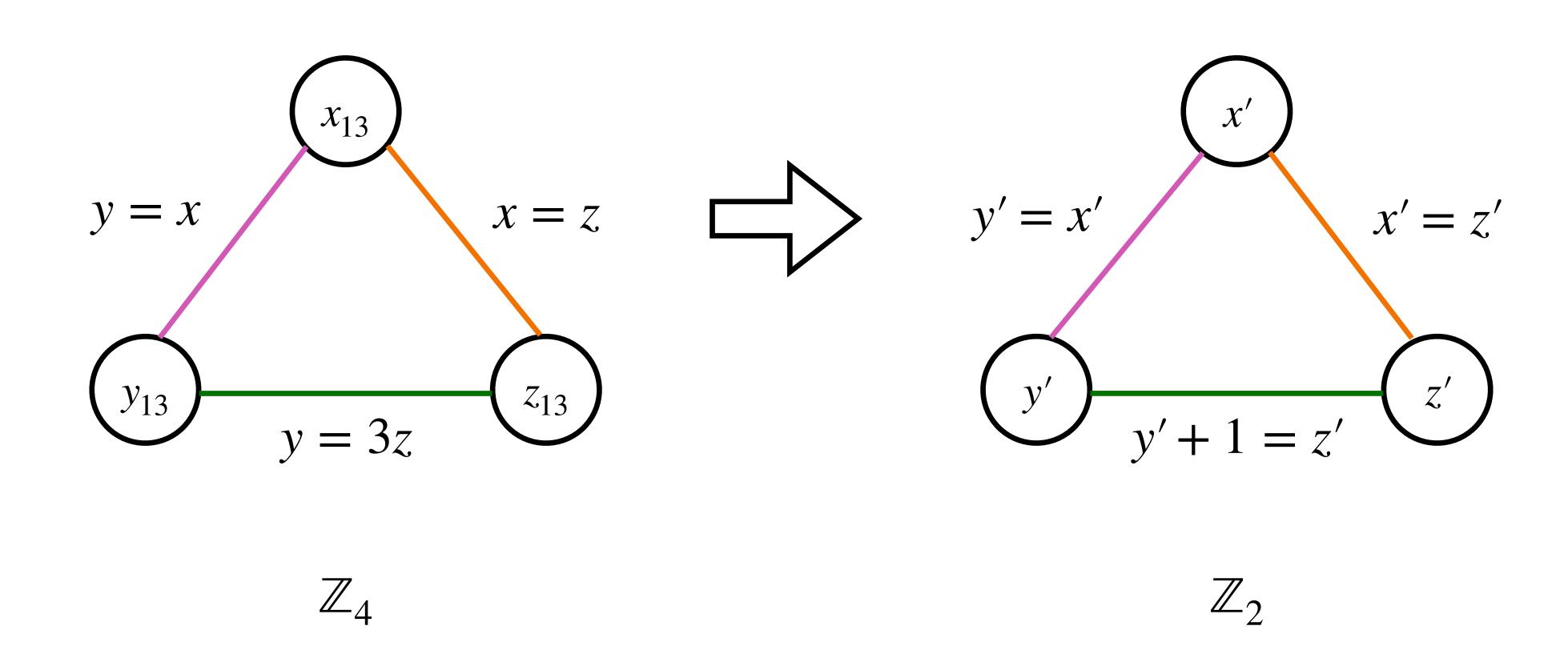
 \mathbb{Z}_4 classes: $\{0\}$, $\{1,3\}$, $\{2\}$.



Information lost?



Information preserved



FPT Approximation for Modular Rings Summary

An FPT **O(1)**-approximation for Min-2-Lin(\mathbb{Z}_{p^n}):

- 1) Iterative compression, branching and homogenization...
- 2) Construct the class assignment graph G.
- 3) Find a conformal st-cut S with $|\delta(S)| \le 2k$ that guarantees progress.
- 4) Construct a class assignment from S, rewrite equations into $\mathbb{Z}_{p^{n-1}}$.
 - * DPC branching fails. Need to use shadow removal + complicated branching.

Summary and Open Problems

Theorem: Min-2-Lin(\mathbb{Z}_m) is $2\omega(m)$ -approximable in FPT time.

For example, $2\omega(4)=2$, so Min-2-Lin(\mathbb{Z}_4) is 2-approximable in FPT time.

Unpublished: Min-2-Lin(\mathbb{Z}_m) is W[1]-hard to $(\omega(m) - \varepsilon)$ -approximate.

Question 1 (**): How to close the gap? Is Min-2-Lin(\mathbb{Z}_{p^n}) in FPT or W[1]-hard?

Question 2 (%): Can we remove shadow removal? (LMRSZ SODA'21)

Question 3 (δ): For which finite rings R is Min-2-Lin(R) FPT-apx? (\P arXiv:2410.09932)

Question 4 (): Which MinCSPs are FPT-approximable?

Thank you!