
Parameterized Complexity of Equality
Constraint Satisfaction

George Osipov & Magnus Wahlström
May 2, 2023

Linköping University, Sweden & Royal Holloway University of London, UK

Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
(d1, . . . ,dr) ∈ Dr, e.g.

• {(a,a) : a ∈ D} is the binary equality relation,
• {(a,b) : a,b ∈ D,a ̸= b} is the binary disequality relation.

A constraint R(x1, . . . , xr) consists of a relation R applied to a tuple of
variables (x1, . . . , xr).

An assignment α : V(X) → D satisfies the constraint if
(α(x1), . . . , α(xr)) ∈ R.

A constraint language Γ is a subset of relations.

1

Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
(d1, . . . ,dr) ∈ Dr, e.g.

• {(a,a) : a ∈ D} is the binary equality relation,
• {(a,b) : a,b ∈ D,a ̸= b} is the binary disequality relation.

A constraint R(x1, . . . , xr) consists of a relation R applied to a tuple of
variables (x1, . . . , xr).

An assignment α : V(X) → D satisfies the constraint if
(α(x1), . . . , α(xr)) ∈ R.

A constraint language Γ is a subset of relations.

1

Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
(d1, . . . ,dr) ∈ Dr, e.g.

• {(a,a) : a ∈ D} is the binary equality relation,
• {(a,b) : a,b ∈ D,a ̸= b} is the binary disequality relation.

A constraint R(x1, . . . , xr) consists of a relation R applied to a tuple of
variables (x1, . . . , xr).

An assignment α : V(X) → D satisfies the constraint if
(α(x1), . . . , α(xr)) ∈ R.

A constraint language Γ is a subset of relations.

1

Constraint Satisfaction (CSP)

CONSTRAINT SATISFACTION PROBLEM FOR Γ AKA CSP(Γ)
INSTANCE: A set variables V and a set of constraints C of the form
R(x1, . . . , xr), where R ∈ Γ and x1, . . . , xr ∈ V.
QUESTION: Is there an assignment α : V→ D that satisfies all
constraints in C?

Example: Consider an instance of CSP(=, ̸=) with domain N:

x1 = x2, x2 = x3, x3 = x4, x1 ̸= x4.

This instance is not satisfiable because x1 = x2 = x3 = x4 implies
x1 = x4 and contradicts x1 ̸= x4.

2

Constraint Satisfaction (CSP)

CONSTRAINT SATISFACTION PROBLEM FOR Γ AKA CSP(Γ)
INSTANCE: A set variables V and a set of constraints C of the form
R(x1, . . . , xr), where R ∈ Γ and x1, . . . , xr ∈ V.
QUESTION: Is there an assignment α : V→ D that satisfies all
constraints in C?

Example: Consider an instance of CSP(=, ̸=) with domain N:

x1 = x2, x2 = x3, x3 = x4, x1 ̸= x4.

This instance is not satisfiable because x1 = x2 = x3 = x4 implies
x1 = x4 and contradicts x1 ̸= x4.

2

MINCSP

MINCSP(Γ)
INSTANCE: An instance (V, C) of CSP(Γ), and integer k.
QUESTION: Is there a subset X ⊆ C of ≤ k constraints such that
(V, C \ X) is satisfiable?

We study this problem under the natural parameter k.

3

MINCSP

MINCSP(Γ)
INSTANCE: An instance (V, C) of CSP(Γ), and integer k.
QUESTION: Is there a subset X ⊆ C of ≤ k constraints such that
(V, C \ X) is satisfiable?

We study this problem under the natural parameter k.

3

Equality MINCSP

MINCSP(=, ≠) with domain N is equivalent to

EDGE MULTICUT
INSTANCE: Graph G, cut requests s1t1, . . . , sℓtℓ, and integer k.
QUESTION: Is there X ⊆ E(G) of size ≤ k separating si and ti for all i?

Edge uv becomes u = v. Request siti becomes si ̸= ti.
EDGE MULTICUT is in FPT ([BDT’11], [MR’11]).

4

Equality MINCSP

An equality constraint relation is any relation definable using ∧,∨
and predicates =, ̸=, e.g.

{(a,b, c) | a,b, c ∈ N, (a = b ∧ b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ.

Why?

• It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT∗.
• It is a prerequisite for all infinite-domain MINCSP classifications.
• Full classifications highlight power and limits of fpt algorithms.
• CSP is a nice fragment of NP for obtaining dichotomies.

5

Equality MINCSP

An equality constraint relation is any relation definable using ∧,∨
and predicates =, ̸=, e.g.

{(a,b, c) | a,b, c ∈ N, (a = b ∧ b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ.

Why?

• It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT∗.

• It is a prerequisite for all infinite-domain MINCSP classifications.
• Full classifications highlight power and limits of fpt algorithms.
• CSP is a nice fragment of NP for obtaining dichotomies.

5

Equality MINCSP

An equality constraint relation is any relation definable using ∧,∨
and predicates =, ̸=, e.g.

{(a,b, c) | a,b, c ∈ N, (a = b ∧ b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ.

Why?

• It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT∗.
• It is a prerequisite for all infinite-domain MINCSP classifications.

• Full classifications highlight power and limits of fpt algorithms.
• CSP is a nice fragment of NP for obtaining dichotomies.

5

Equality MINCSP

An equality constraint relation is any relation definable using ∧,∨
and predicates =, ̸=, e.g.

{(a,b, c) | a,b, c ∈ N, (a = b ∧ b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ.

Why?

• It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT∗.
• It is a prerequisite for all infinite-domain MINCSP classifications.
• Full classifications highlight power and limits of fpt algorithms.

• CSP is a nice fragment of NP for obtaining dichotomies.

5

Equality MINCSP

An equality constraint relation is any relation definable using ∧,∨
and predicates =, ̸=, e.g.

{(a,b, c) | a,b, c ∈ N, (a = b ∧ b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ.

Why?

• It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT∗.
• It is a prerequisite for all infinite-domain MINCSP classifications.
• Full classifications highlight power and limits of fpt algorithms.
• CSP is a nice fragment of NP for obtaining dichotomies.

5

Some Equality Constraint Relations

1. NEQ3 = {(a,b, c) : a ̸= b ∧ b ̸= c ∧ a ̸= c}, accepts (1, 2, 3).

MINCSP(NEQ3,=) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE3 = {(a,b, c) : a ̸= b ∨ b ̸= c ∨ a ̸= c}, rejects (1, 1, 1).

MINCSP(NAE3,=) ≈ 3-STEINER MULTICUT. W[1]-hard [BHMvL’16], 2-FPA.

3. Rd
̸= = {(a1,b1, . . . , ad,bd) : a1 ̸= b1 ∨ · · · ∨ ad ̸= bd}.

MINCSP(Rd
̸=,=) reduces to DISJUNCTIVE MULTICUT.

W[1]-hard for d ≥ 2, has constant-factor FPA for all d ∈ O(1).

4. ODD3 = {(a,b, c) : (a = b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

MINCSP(ODD3,=, ̸=) ≈APX HITTING SET. W[2]-hard, no c-FPA.

6

Some Equality Constraint Relations

1. NEQ3 = {(a,b, c) : a ̸= b ∧ b ̸= c ∧ a ̸= c}, accepts (1, 2, 3).

MINCSP(NEQ3,=) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE3 = {(a,b, c) : a ̸= b ∨ b ̸= c ∨ a ̸= c}, rejects (1, 1, 1).

MINCSP(NAE3,=) ≈ 3-STEINER MULTICUT. W[1]-hard [BHMvL’16], 2-FPA.

3. Rd
̸= = {(a1,b1, . . . , ad,bd) : a1 ̸= b1 ∨ · · · ∨ ad ̸= bd}.

MINCSP(Rd
̸=,=) reduces to DISJUNCTIVE MULTICUT.

W[1]-hard for d ≥ 2, has constant-factor FPA for all d ∈ O(1).

4. ODD3 = {(a,b, c) : (a = b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

MINCSP(ODD3,=, ̸=) ≈APX HITTING SET. W[2]-hard, no c-FPA.

6

Some Equality Constraint Relations

1. NEQ3 = {(a,b, c) : a ̸= b ∧ b ̸= c ∧ a ̸= c}, accepts (1, 2, 3).

MINCSP(NEQ3,=) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE3 = {(a,b, c) : a ̸= b ∨ b ̸= c ∨ a ̸= c}, rejects (1, 1, 1).

MINCSP(NAE3,=) ≈ 3-STEINER MULTICUT. W[1]-hard [BHMvL’16], 2-FPA.

3. Rd
̸= = {(a1,b1, . . . , ad,bd) : a1 ̸= b1 ∨ · · · ∨ ad ̸= bd}.

MINCSP(Rd
̸=,=) reduces to DISJUNCTIVE MULTICUT.

W[1]-hard for d ≥ 2, has constant-factor FPA for all d ∈ O(1).

4. ODD3 = {(a,b, c) : (a = b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

MINCSP(ODD3,=, ̸=) ≈APX HITTING SET. W[2]-hard, no c-FPA.

6

Some Equality Constraint Relations

1. NEQ3 = {(a,b, c) : a ̸= b ∧ b ̸= c ∧ a ̸= c}, accepts (1, 2, 3).

MINCSP(NEQ3,=) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE3 = {(a,b, c) : a ̸= b ∨ b ̸= c ∨ a ̸= c}, rejects (1, 1, 1).

MINCSP(NAE3,=) ≈ 3-STEINER MULTICUT. W[1]-hard [BHMvL’16], 2-FPA.

3. Rd
̸= = {(a1,b1, . . . , ad,bd) : a1 ̸= b1 ∨ · · · ∨ ad ̸= bd}.

MINCSP(Rd
̸=,=) reduces to DISJUNCTIVE MULTICUT.

W[1]-hard for d ≥ 2, has constant-factor FPA for all d ∈ O(1).

4. ODD3 = {(a,b, c) : (a = b = c) ∨ (a ̸= b ∧ b ̸= c ∧ a ̸= c)}.

MINCSP(ODD3,=, ̸=) ≈APX HITTING SET. W[2]-hard, no c-FPA.

6

Full Classification

Classification Theorem
Let Γ be a finite equality constraint language such that CSP(Γ) is in
P and MINCSP(Γ) is NP-hard. Then one of the following holds.

• MINCSP(Γ) is in FPT.
• MINCSP(Γ) is W[1]-hard but admits constant-factor FPA.
• MINCSP(Γ) is W[2]-hard and admits no constant-factor FPA.

7

Full Classification Details

MINCSP(Γ) is in FPT if it reduces to MULTICUT WITH DELETABLE TRIPLES,
and W[1]-hard otherwise.

MINCSP(Γ) admits constant-factor FPA if it reduces to DISJUNCTIVE
MULTICUT, and ≈APX HITTING SET otherwise.

MULTICUT WITH DELETABLE TRIPLES solved using [KKPW’23].
DISJUNCTIVE MULTICUT constant-factor FPA algorithm – coming up.

The quest guided by equality CSP results of [BK’08] and [BCP’10].

8

Full Classification Details

MINCSP(Γ) is in FPT if it reduces to MULTICUT WITH DELETABLE TRIPLES,
and W[1]-hard otherwise.

MINCSP(Γ) admits constant-factor FPA if it reduces to DISJUNCTIVE
MULTICUT, and ≈APX HITTING SET otherwise.

MULTICUT WITH DELETABLE TRIPLES solved using [KKPW’23].
DISJUNCTIVE MULTICUT constant-factor FPA algorithm – coming up.

The quest guided by equality CSP results of [BK’08] and [BCP’10].

8

DISJUNCTIVE MULTICUT

Let G be a graph and L be a family of list requests, where
L ∋ L = {s1t1, . . . , sdtd}.

A subset X ⊆ V(G) satisfies L if X separates s1, t1 or s2, t2 or …sd, td.

Define cost(G,L) = min{|X| : X ⊆ V(G), ∀L ∈ L X satisfies L}.

DISJUNCTIVE MULTICUT
INSTANCE: Graph G, a family of request lists L, and integer k.

QUESTION: Is cost(G,L) ≤ k?

9

DISJUNCTIVE MULTICUT

DISJUNCTIVE MULTICUT
INSTANCE: Graph G, a family of request lists L, and integer k.

QUESTION: Is cost(G,L) ≤ k?

We allow singleton cut requests ss, which are satisfied by X if s ∈ X.

HITTING SET ≈APX DJMC: set {a,b, c} becomes request list {aa,bb, cc}.

We assume that the lists have at most d ∈ O(1) entries.

2d-HITTING SET is in FPT.

10

DISJUNCTIVE MULTICUT

DISJUNCTIVE MULTICUT
INSTANCE: Graph G, a family of request lists L, and integer k.

QUESTION: Is cost(G,L) ≤ k?

We allow singleton cut requests ss, which are satisfied by X if s ∈ X.

HITTING SET ≈APX DJMC: set {a,b, c} becomes request list {aa,bb, cc}.

We assume that the lists have at most d ∈ O(1) entries.

2d-HITTING SET is in FPT.

10

DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G,L) → (G′,L′) such that
cost(G′,L′) ≤ c · cost(G,L) and (G′,L′) is closer to 2d-HITTING SET.

Progress measure µ = maximum # non-singletons in a list of L.

Example: cost(G,L) = C and d = 4.

(G,L) → (G1,L1) → (G2,L2) → (G3,L3) → (G4,L4)
cost C → cost 3C → cost 32C → cost 33C → cost 34C
µ = 4 → µ = 3 → µ = 2 → µ = 1 → µ = 0

If cost(G,L) ≤ k, then cost(G4,L4) ≤ 34k.
If cost(G,L) > 34k, then cost(G4,L4) > 34k.

We obtain 34-approximation.

11

DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G,L) → (G′,L′) such that
cost(G′,L′) ≤ c · cost(G,L) and (G′,L′) is closer to 2d-HITTING SET.

Progress measure µ = maximum # non-singletons in a list of L.

Example: cost(G,L) = C and d = 4.

(G,L) → (G1,L1) → (G2,L2) → (G3,L3) → (G4,L4)
cost C → cost 3C → cost 32C → cost 33C → cost 34C
µ = 4 → µ = 3 → µ = 2 → µ = 1 → µ = 0

If cost(G,L) ≤ k, then cost(G4,L4) ≤ 34k.
If cost(G,L) > 34k, then cost(G4,L4) > 34k.

We obtain 34-approximation.

11

DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G,L) → (G′,L′) such that
cost(G′,L′) ≤ c · cost(G,L) and (G′,L′) is closer to 2d-HITTING SET.

Progress measure µ = maximum # non-singletons in a list of L.

Example: cost(G,L) = C and d = 4.

(G,L) → (G1,L1) → (G2,L2) → (G3,L3) → (G4,L4)
cost C → cost 3C → cost 32C → cost 33C → cost 34C
µ = 4 → µ = 3 → µ = 2 → µ = 1 → µ = 0

If cost(G,L) ≤ k, then cost(G4,L4) ≤ 34k.
If cost(G,L) > 34k, then cost(G4,L4) > 34k.

We obtain 34-approximation.

11

DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G,L) → (G′,L′) such that
cost(G′,L′) ≤ c · cost(G,L) and (G′,L′) is closer to 2d-HITTING SET.

Progress measure µ = maximum # non-singletons in a list of L.

Example: cost(G,L) = C and d = 4.

(G,L) → (G1,L1) → (G2,L2) → (G3,L3) → (G4,L4)
cost C → cost 3C → cost 32C → cost 33C → cost 34C
µ = 4 → µ = 3 → µ = 2 → µ = 1 → µ = 0

If cost(G,L) ≤ k, then cost(G4,L4) ≤ 34k.
If cost(G,L) > 34k, then cost(G4,L4) > 34k.

We obtain 34-approximation.

11

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.

2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.

3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.

5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.

6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.

7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.

8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: Xin of size cd · k+ 1 that satisfies L.
2. By 2O(k)-branching, assume there is Xopt such that Xin ∩ Xopt = ∅.
3. At cost ≤ |Xopt|, assume Xin has ≤ 1 vertex in every connected
component of G− Xopt.

4. Let Tin be the set of cut requests satisfied by Xin.
5. Let Topt be the set of cut requests satisfied by Xopt.
6. Let F be the set of all st-walks for st ∈ Tin ∩ Tout.
7. Xopt contains an F-transversal Y.
8. Replace Y with a union Z of important separators∗.
Note that Z ∪ Xopt satisfies L and |Z ∪ Xopt| ≤ 2|Xopt|.

9. Benefit: decrease µ by removing or replacing every st ∈ Tin with
pairs of singletons (examples coming up).

10. Cost increased by a factor ≤ 3.

12

DISJUNCTIVE MULTICUT: Shadow Removal

Shadow covering algorithm of [MR’11, CCHM’12] provides W ⊆ V(G) s.t.

• Z ⊆ W, and
• if Z disconnects x from s ∈ W, then s ∈ Z.

13

DISJUNCTIVE MULTICUT: Simplification

Case 1: L = {st, . . . } → {ss, tt, . . . }.

14

DISJUNCTIVE MULTICUT: Simplification

Case 2: L = {st, . . . } → {aa, tt, . . . } for all a ∈ N(Hs) ∩W.

15

DISJUNCTIVE MULTICUT: Simplification

Case 3: L = {st, . . . } → {aa,bb, . . . } for all a ∈ N(Hs) ∩W and
b ∈ N(Ht) ∩W

16

Wrap-up

Theorem
DISJUNCTIVE MULTICUT with lists of length d admits 3d-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2O(k)-time 2-approximation
algorithm.

We also study MINCSP(Γ+) for equality constraint languages Γ
extended with unit assignments like x = 1, y = 2, etc.
Conclusion: MINCSP(Γ+) is either trivial, equivalent to MINCSP(Γ),
equivalent to MINCSP(B) for a Boolean language B, solved by simple
branching, solved by reduction to MULTIWAY CUT, or hard.

17

Wrap-up

Theorem
DISJUNCTIVE MULTICUT with lists of length d admits 3d-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2O(k)-time 2-approximation
algorithm.

We also study MINCSP(Γ+) for equality constraint languages Γ
extended with unit assignments like x = 1, y = 2, etc.
Conclusion: MINCSP(Γ+) is either trivial, equivalent to MINCSP(Γ),
equivalent to MINCSP(B) for a Boolean language B, solved by simple
branching, solved by reduction to MULTIWAY CUT, or hard.

17

Wrap-up

Theorem
DISJUNCTIVE MULTICUT with lists of length d admits 3d-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2O(k)-time 2-approximation
algorithm.

We also study MINCSP(Γ+) for equality constraint languages Γ
extended with unit assignments like x = 1, y = 2, etc.

Conclusion: MINCSP(Γ+) is either trivial, equivalent to MINCSP(Γ),
equivalent to MINCSP(B) for a Boolean language B, solved by simple
branching, solved by reduction to MULTIWAY CUT, or hard.

17

Wrap-up

Theorem
DISJUNCTIVE MULTICUT with lists of length d admits 3d-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2O(k)-time 2-approximation
algorithm.

We also study MINCSP(Γ+) for equality constraint languages Γ
extended with unit assignments like x = 1, y = 2, etc.
Conclusion: MINCSP(Γ+) is either trivial, equivalent to MINCSP(Γ),
equivalent to MINCSP(B) for a Boolean language B, solved by simple
branching, solved by reduction to MULTIWAY CUT, or hard.

17

Questions?

Classification Theorem
Let Γ be a finite equality constraint language such that CSP(Γ) is in
P and MINCSP(Γ) is NP-hard. Then one of the following holds.

• MINCSP(Γ) is in FPT.
• MINCSP(Γ) is W[1]-hard but admits constant-factor FPA.
• MINCSP(Γ) is W[2]-hard and admits no constant-factor FPA.

Questions?

18

