Parameterized Complexity of Equality
Constraint Satisfaction

George Osipov & Magnus Wahlstrom
May 2, 2023

Linkoping University, Sweden & Royal Holloway University of London, UK



Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
(dy,...,d;)eD’,eg.

- {(a,a) : a € D} is the binary equality relation,
- {(a,b) : a,b € D,a # b} is the binary disequality relation.



Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
(dy,...,d;)eD’,eg.

- {(a,a) : a € D} is the binary equality relation,

- {(a,b) : a,b € D,a # b} is the binary disequality relation.
A constraint R(xq, ..., X;) consists of a relation R applied to a tuple of
variables (x1,...,X.).

An assignment « : V(X) — D satisfies the constraint if
(a(x1), ..., a(x;)) € R.



Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
(dy,...,d;)eD’,eg.

- {(a,a) : a € D} is the binary equality relation,

- {(a,b) : a,b € D,a # b} is the binary disequality relation.
A constraint R(xq, ..., X;) consists of a relation R applied to a tuple of
variables (x1,...,X.).

An assignment « : V(X) — D satisfies the constraint if
(a(x1), ..., a(x;)) € R.

A constraint language I is a subset of relations.



Constraint Satisfaction (CSP)

CONSTRAINT SATISFACTION PROBLEM FOR I" AKA CSP(T")

INSTANCE: A set variables V and a set of constraints C of the form
R(X1,...,Xr), where R el and xq,...,x, € V.

QUESTION: Is there an assignment « : V — D that satisfies all
constraints in C?



Constraint Satisfaction (CSP)

CONSTRAINT SATISFACTION PROBLEM FOR I" AKA CSP(T")

INSTANCE: A set variables V and a set of constraints C of the form
R(X1,...,Xr), where R el and xq,...,x, € V.

QUESTION: Is there an assignment « : V — D that satisfies all
constraints in C?

: Consider an instance of CSP(=, #) with domain N:

X1 = X2, Xy = X3,X3 = X4, Xq #sz

This instance is not satisfiable because x; = X, = x3 = x, implies
X1 = X4 and contradicts xq # X,.



MINCSP

MINCSP(I")

INSTANCE: An instance (V, C) of CSP(T"), and integer k.
QUESTION: Is there a subset X C C of < k constraints such that
(V,C\ X) is satisfiable?



MINCSP

MINCSP(I")

INSTANCE: An instance (V, C) of CSP(T"), and integer k.
QUESTION: Is there a subset X C C of < k constraints such that
(V,C\ X) is satisfiable?

We study this problem under the natural parameter k.



Equality MINCSP

MINCSP(=, #) with domain N is equivalent to

EDGE MULTICUT

INSTANCE: Graph G, cut requests sity, ..., Sety, and integer k.
QUESTION: Is there X C E(G) of size < k separating s; and ¢; for all i?

Edge uv becomes u = v. Request s;t; becomes s; # t;.
EDGE MULTICUT is in FPT ([BDT'11], [MR'11]).



Equality MINCSP

An equality constraint relation is any relation definable using A, v
and predicates =, #, e.g.

{(a,b,c)|a,b,ceN,(a=bAab=c)v(a£bArb#cnra+#)}.
This relation accepts (1,1,1), (1,2, 3), but rejects (1,2, 2).



Equality MINCSP

An equality constraint relation is any relation definable using A, v
and predicates =, #, e.g.

{(a,b,c)|a,b,ceN,(a=bAab=c)v(a£bArb#cnra+#)}.
This relation accepts (1,1,1), (1,2, 3), but rejects (1,2, 2).

We consider MINCSP(T) for all finite equality constraint languages T
Why?

- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.



Equality MINCSP

An equality constraint relation is any relation definable using A, v
and predicates =, #, e.g.

{(a,b,c)|a,b,ceN,(a=bAab=c)v(a£bArb#cnra+#)}.
This relation accepts (1,1,1), (1,2, 3), but rejects (1,2, 2).

We consider MINCSP(T) for all finite equality constraint languages T
Why?

- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.
- Itis a prerequisite for all infinite-domain MINCSP classifications.



Equality MINCSP

An equality constraint relation is any relation definable using A, v
and predicates =, #, e.g.

{(a,b,c)|a,b,ceN,(a=bAab=c)v(a£bArb#cnra+#)}.
This relation accepts (1,1,1), (1,2, 3), but rejects (1,2, 2).

We consider MINCSP(T) for all finite equality constraint languages T
Why?
- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.

- Itis a prerequisite for all infinite-domain MINCSP classifications.
- Full classifications highlight power and limits of fpt algorithms.



Equality MINCSP

An equality constraint relation is any relation definable using A, v
and predicates =, #, e.g.

{(a,b,c)|a,b,ceN,(a=bAab=c)v(a£bArb#cnra+#)}.
This relation accepts (1,1,1), (1,2, 3), but rejects (1,2, 2).

We consider MINCSP(T) for all finite equality constraint languages T
Why?

- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.

- Itis a prerequisite for all infinite-domain MINCSP classifications.

- Full classifications highlight power and limits of fpt algorithms.

- CSP is a nice fragment of NP for obtaining dichotomies.



Some Equality Constraint Relations

1. NEQ; = {(a,b,c):a#bAb+#cAa#c}, accepts (1,2,3).

MINCSP(NEQ;, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.



Some Equality Constraint Relations

1. NEQ; = {(a,b,c):a#bAb+#cAa#c}, accepts (1,2,3).

MINCSP(NEQ;, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE; ={(a,b,c) :a#bvVvb#cVva#c} rejects (1,1,1).
MINCSP(NAE;, =) ~ 3-STEINER MuLTICuT. W[1]-hard [BHMvL'16], 2-FPA.



Some Equality Constraint Relations

1. NEQ; = {(a,b,c):a#bAb+#cAa#c}, accepts (1,2,3).

MINCSP(NEQ;, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE; ={(a,b,c) :a#bvVvb#cVva#c} rejects (1,1,1).
MINCSP(NAE;, =) ~ 3-STEINER MuLTICuT. W[1]-hard [BHMvL'16], 2-FPA.

3.RY = {(a1,b1,...,0q9,bg) : a1 # by V -+ V ag # by},

MlNCSP(Ri, =) reduces to DISJUNCTIVE MULTICUT.
WI[1]-hard for d > 2, has constant-factor FPA for all d € O(1).



Some Equality Constraint Relations

1. NEQ; = {(a,b,c):a#bAb+#cAa#c}, accepts (1,2,3).

MINCSP(NEQ;, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE; ={(a,b,c) :a#bvVvb#cVva#c} rejects (1,1,1).
MINCSP(NAE;, =) ~ 3-STEINER MuLTICuT. W[1]-hard [BHMvL'16], 2-FPA.

3.RY = {(a1,b1,...,0q9,bg) : a1 # by V -+ V ag # by},

MlNCSP(Ri, =) reduces to DISJUNCTIVE MULTICUT.
WI[1]-hard for d > 2, has constant-factor FPA for all d € O(1).

4. ODD; ={(a,b,c): (a=b=c)v(a#bAab#cnrna+#)}.
MINCSP(ODD3, =, #) ~tapx HITTING SET. W[2]-hard, no c-FPA.



Full Classification

Classification Theorem
Let I be a finite equality constraint language such that CSP(T) is in

P and MINCSP(T) is NP-hard. Then one of the following holds.
- MINCSP(T) is in FPT.
- MINCSP(T) is W[1]-hard but admits constant-factor FPA.
- MINCSP(T) is W[2]-hard and admits no constant-factor FPA.



Full Classification Details

MINCSP(I) is in FPT if it reduces to MULTICUT WITH DELETABLE TRIPLES,
and W[1]-hard otherwise.

MINCSP(I") admits constant-factor FPA if it reduces to DISJUNCTIVE
MULTICUT, and azpx HITTING SET otherwise.



Full Classification Details

MINCSP(T) is in FPT if it reduces to MULTICUT WITH DELETABLE TRIPLES,
and W[1]-hard otherwise.

MINCSP(I") admits constant-factor FPA if it reduces to DISJUNCTIVE
MULTICUT, and azpx HITTING SET otherwise.

MULTICUT WITH DELETABLE TRIPLES solved using [KKPW'23].
DISJUNCTIVE MULTICUT constant-factor FPA algorithm — coming up.

The quest guided by equality CSP results of [BK'08] and [BCP'10].



DISJUNCTIVE MULTICUT

Let G be a graph and £ be a family of list requests, where
L= {S']ﬁ7 . ,Sdtd}.

A subset X C V(G) satisfies L if X separates sy, t; Or Sy, t; Or ..Sq, tg.
Define cost(G, £) = min{|X| : X C V(G),VL € L X satisfies L}.

DISJUNCTIVE MULTICUT
INSTANCE: Graph G, a family of request lists £, and integer k.

QUESTION: Is cost(G, L) < k?



DISJUNCTIVE MULTICUT

DISJUNCTIVE MULTICUT
INSTANCE: Graph G, a family of request lists £, and integer k.

QUESTION: Is cost(G, £) < R?

We allow singleton cut requests ss, which are satisfied by X if s € X.



DISJUNCTIVE MULTICUT

DISJUNCTIVE MULTICUT
INSTANCE: Graph G, a family of request lists £, and integer k.

QUESTION: Is cost(G, £) < R?

We allow singleton cut requests ss, which are satisfied by X if s € X.
HITTING SET ~4px DJMC: set {a, b, c} becomes request list {aa, bb, cc}.
We assume that the lists have at most d € O(1) entries.

2d-HITTING SET is in FPT.



DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G, £) — (G’, £') such that
cost(G', L) < ¢ - cost(G, £) and (G, L) is closer to 2d-HITTING SET.

Progress measure p = maximum # non-singletons in a list of L.

1



DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G, £) — (G’, £') such that
cost(G', L) < ¢ - cost(G, £) and (G, L) is closer to 2d-HITTING SET.

Progress measure p = maximum # non-singletons in a list of L.

1



DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G, £) — (G’, £') such that
cost(G', L) < ¢ - cost(G, £) and (G, L) is closer to 2d-HITTING SET.

Progress measure p = maximum # non-singletons in a list of L.

Example: cost(G, L) = Cand d = 4.

(G,,C) — (Gq,ﬁq) — (Gz,ﬁz) — (G3,£3) — (Gz,,[:z,)
costC — cost3C — cost3?’C — cost3’C — cost3“C

w=4 = u=3 - u=2 - u=1 - u=0

1



DISJUNCTIVE MULTICUT

Main idea: design an algorithm (G, £) — (G’, £') such that
cost(G', L) < ¢ - cost(G, £) and (G, L) is closer to 2d-HITTING SET.

Progress measure p = maximum # non-singletons in a list of L.

Example: cost(G, L) = Cand d = 4.

(G,,C) — (Gq,ﬁq) — (Gz,ﬁz) — (G3,£3) — (Gz,,[:z,)
costC — cost3C — cost3?’C — cost3’C — cost3“C

w=4 = u=3 - u=2 - u=1 - u=0

If cost(G, £) < k, then cost(Gs, £4) < 3*R.
If cost(G, £) > 3"k, then cost(Gy, L4) > 3*k.

We obtain 3“-approximation.

1



DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.



DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
2. By 2°(-branching, assume there is Xopt such that X, N Xopt = 0.



DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
2. By 2°(-branching, assume there is Xopt such that X, N Xopt = 0.

3. At cost < |Xopt|, assume Xj, has < 1vertex in every connected
component of G — Xopt.



DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
2. By 2°(-branching, assume there is Xopt such that X, N Xopt = 0.

3. At cost < |Xopt|, assume Xj, has < 1vertex in every connected
component of G — Xopt.

4. Let T, be the set of cut requests satisfied by Xj,.



DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
2. By 2°(-branching, assume there is Xopt such that X, N Xopt = 0.

3. At cost < |Xopt|, assume Xj, has < 1vertex in every connected
component of G — Xopt.

4. Let T, be the set of cut requests satisfied by Xj,.
5. Let Topt be the set of cut requests satisfied by Xop:.



DISJUNCTIVE MULTICUT: Outline

1. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
2. By 2°(-branching, assume there is Xopt such that X, N Xopt = 0.

3. At cost < |Xopt|, assume Xj, has < 1vertex in every connected
component of G — Xopt.

4. Let T, be the set of cut requests satisfied by Xj,.
5. Let Topt be the set of cut requests satisfied by Xop:.
6. Let F be the set of all st-walks for st € T;, N Tout.



DISJUNCTIVE MULTICUT: Outline

o

~ O U &

. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.

By 2°(®)-branching, assume there is Xopt such that X;, N Xopt = 0.

At cost < [Xopt|, assume Xi, has < 1 vertex in every connected
component of G — Xopt.

Let 7;, be the set of cut requests satisfied by X;,.
Let Topt be the set of cut requests satisfied by Xopr.
Let F be the set of all st-walks for st € 7;, N Tour.

Xopt contains an F-transversal Y.



DISJUNCTIVE MULTICUT: Outline

o

© N O B

. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.

By 2°(®)-branching, assume there is Xopt such that X;, N Xopt = 0.

At cost < [Xopt|, assume Xi, has < 1 vertex in every connected
component of G — Xopt.

Let 7;, be the set of cut requests satisfied by X;,.
Let Topt be the set of cut requests satisfied by Xopr.
Let F be the set of all st-walks for st € 7;, N Tour.
Xopt contains an F-transversal Y.

Replace Y with a union Z of important separators*.
Note that Z U Xop: Satisfies £ and |Z U Xopt| < 2|Xoptl-



DISJUNCTIVE MULTICUT: Outline

w

® g O o B~

. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
. By 29(0-branching, assume there is Xopt such that Xi, N Xopr = 0.

. At cost < |Xope|, assume Xj, has < 1 vertex in every connected

component of G — Xopt.

. Let 7;, be the set of cut requests satisfied by X;,.

. Let Topr be the set of cut requests satisfied by Xop.
. Let F be the set of all st-walks for st € 7;, N Tour.

. Xopt contains an F-transversal Y.

. Replace Y with a union Z of important separators*.

Note that Z U Xop: Satisfies £ and |Z U Xopt| < 2|Xoptl-

. Benefit: decrease u by removing or replacing every st € T;, with

pairs of singletons (examples coming up).



DISJUNCTIVE MULTICUT: Outline

w

® g O o B~

10.

. Iterative compression: X;, of size ¢4 - k + 1 that satisfies L.
. By 29(0-branching, assume there is Xopt such that Xi, N Xopr = 0.
. At cost <

Xopt|, assume Xi, has < 1 vertex in every connected
component of G — Xopt.

. Let 7;, be the set of cut requests satisfied by X;,.

. Let Topr be the set of cut requests satisfied by Xop.
. Let F be the set of all st-walks for st € 7;, N Tour.

. Xopt contains an F-transversal Y.

. Replace Y with a union Z of important separators*.

Note that Z U Xop: Satisfies £ and [Z U Xope| < 2|Xopel.

. Benefit: decrease u by removing or replacing every st € T;, with

pairs of singletons (examples coming up).

Cost increased by a factor < 3.



DISJUNCTIVE MuLTICUT: Shadow Removal

—0

T~l—o0

Shadow cover

Shadow covering algorithm of [MR11, CCHM'12] provides W C V(G) s.t.

- ZC W, and
- if Zdisconnects x from s € W, then s € Z.



DISJUNCTIVE MuLTIcUT: Simplification

S
w

(7

Shadow cover

Case 1: L={st,...} — {ss,tt,...}.

14



DISJUNCTIVE MuLTIcUT: Simplification

Shadow cover

Case 2: L ={st,...} = {aa,tt,... } foralla € N(Hs) nW.



DISJUNCTIVE MuLTIcUT: Simplification

Shadow cover

Case3: L={st,...} — {aa,bb,...} forall a € N(Hs) "W and
be N(H)NW



Theorem

DISJUNCTIVE MULTICUT with lists of length d admits 39-approximation
in fpt time.



Theorem

DISJUNCTIVE MULTICUT with lists of length d admits 39-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2°(F)-time 2-approximation
algorithm.



Theorem

DISJUNCTIVE MULTICUT with lists of length d admits 39-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2°(F)-time 2-approximation
algorithm.

We also study MINCSP(I'™) for equality constraint languages I
extended with unit assignments like x =1,y = 2, etc.



Theorem

DISJUNCTIVE MULTICUT with lists of length d admits 39-approximation
in fpt time.

STEINER MULTICUT admits a much simpler 2°()-time 2-approximation
algorithm.

We also study MINCSP(I'™) for equality constraint languages I
extended with unit assignments like x =1, y = 2, etc.

Conclusion: MINCSP(I't) is either trivial, equivalent to MINCSP(T),
equivalent to MINCSP(B) for a Boolean language B, solved by simple
branching, solved by reduction to MuLTIWAY CUT, or hard.



Questions?

Classification Theorem

Let I be a finite equality constraint language such that CSP(T) is in
P and MINCSP(I') is NP-hard. Then one of the following holds.

- MINCSP(T') is in FPT.
- MINCSP(T) is W[1]-hard but admits constant-factor FPA.
- MINCSP(T) is W[2]-hard and admits no constant-factor FPA.



