Parameterized Complexity of Equality Constraint Satisfaction

George Osipov & Magnus Wahlström May 2, 2023

Linköping University, Sweden & Royal Holloway University of London, UK

Fix a domain of values *D*. A relation *R* is a subset of tuples $(d_1, \ldots, d_r) \in D^r$, e.g.

- $\{(a, a) : a \in D\}$ is the binary equality relation,
- $\{(a, b) : a, b \in D, a \neq b\}$ is the binary disequality relation.

Fix a domain of values *D*. A **relation** *R* is a subset of tuples $(d_1, \ldots, d_r) \in D^r$, e.g.

- $\{(a, a) : a \in D\}$ is the binary equality relation,
- $\{(a, b) : a, b \in D, a \neq b\}$ is the binary disequality relation.

A constraint $R(x_1, ..., x_r)$ consists of a relation R applied to a tuple of variables $(x_1, ..., x_r)$.

An assignment $\alpha : V(X) \to D$ satisfies the constraint if $(\alpha(x_1), \ldots, \alpha(x_r)) \in R$.

Fix a domain of values *D*. A **relation** *R* is a subset of tuples $(d_1, \ldots, d_r) \in D^r$, e.g.

- $\{(a, a) : a \in D\}$ is the binary equality relation,
- $\{(a, b) : a, b \in D, a \neq b\}$ is the binary disequality relation.

A constraint $R(x_1, ..., x_r)$ consists of a relation R applied to a tuple of variables $(x_1, ..., x_r)$.

An assignment $\alpha : V(X) \to D$ satisfies the constraint if $(\alpha(x_1), \ldots, \alpha(x_r)) \in R$.

A **constraint language Γ** is a subset of relations.

Constraint Satisfaction Problem for Γ aka CSP(Γ)

INSTANCE: A set variables V and a set of constraints C of the form $R(x_1, \ldots, x_r)$, where $R \in \Gamma$ and $x_1, \ldots, x_r \in V$. QUESTION: Is there an assignment $\alpha : V \to D$ that satisfies all constraints in C?

Constraint Satisfaction Problem for Γ aka CSP(Γ)

INSTANCE: A set variables V and a set of constraints C of the form $R(x_1, \ldots, x_r)$, where $R \in \Gamma$ and $x_1, \ldots, x_r \in V$. QUESTION: Is there an assignment $\alpha : V \to D$ that satisfies all constraints in C?

Example: Consider an instance of $CSP(=, \neq)$ with domain \mathbb{N} :

$$X_1 = X_2, X_2 = X_3, X_3 = X_4, X_1 \neq X_4.$$

This instance is not satisfiable because $x_1 = x_2 = x_3 = x_4$ implies $x_1 = x_4$ and contradicts $x_1 \neq x_4$.

$MINCSP(\Gamma)$

INSTANCE: An instance (V, C) of CSP(Γ), and integer k. QUESTION: Is there a subset $X \subseteq C$ of $\leq k$ constraints such that $(V, C \setminus X)$ is satisfiable?

$MINCSP(\Gamma)$

INSTANCE: An instance (V, C) of $CSP(\Gamma)$, and integer k. QUESTION: Is there a subset $X \subseteq C$ of $\leq k$ constraints such that $(V, C \setminus X)$ is satisfiable?

We study this problem under the natural parameter k.

$MINCSP(=, \neq)$ with domain \mathbb{N} is equivalent to

Edge Multicut

INSTANCE: Graph G, cut requests $s_1t_1, \ldots, s_\ell t_\ell$, and integer k. QUESTION: Is there $X \subseteq E(G)$ of size $\leq k$ separating s_i and t_i for all i?

Edge uv becomes u = v. Request $s_i t_i$ becomes $s_i \neq t_i$. EDGE MULTICUT is in FPT ([BDT'11], [MR'11]).

 $\{(a, b, c) \mid a, b, c \in \mathbb{N}, (a = b \land b = c) \lor (a \neq b \land b \neq c \land a \neq c)\}.$

This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

 $\{(a, b, c) \mid a, b, c \in \mathbb{N}, (a = b \land b = c) \lor (a \neq b \land b \neq c \land a \neq c)\}.$ This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ. Why?

• It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.

 $\{(a, b, c) \mid a, b, c \in \mathbb{N}, (a = b \land b = c) \lor (a \neq b \land b \neq c \land a \neq c)\}.$ This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ. Why?

- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.
- It is a prerequisite for all infinite-domain MINCSP classifications.

 $\{(a, b, c) \mid a, b, c \in \mathbb{N}, (a = b \land b = c) \lor (a \neq b \land b \neq c \land a \neq c)\}.$ This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ. Why?

- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.
- It is a prerequisite for all infinite-domain MINCSP classifications.
- Full classifications highlight power and limits of fpt algorithms.

 $\{(a, b, c) \mid a, b, c \in \mathbb{N}, (a = b \land b = c) \lor (a \neq b \land b \neq c \land a \neq c)\}.$ This relation accepts (1, 1, 1), (1, 2, 3), but rejects (1, 2, 2).

We consider MINCSP(Γ) for all finite equality constraint languages Γ. Why?

- It generalizes EDGE MULTICUT, STEINER MULTICUT, MULTIWAY CUT*.
- It is a prerequisite for all infinite-domain MINCSP classifications.
- Full classifications highlight power and limits of fpt algorithms.
- CSP is a nice fragment of NP for obtaining dichotomies.

1. NEQ₃ = { $(a, b, c) : a \neq b \land b \neq c \land a \neq c$ }, accepts (1,2,3).

 $MinCSP(NEQ_3, =)$ reduced to Multicut with Deletable Triples. FPT.

1. NEQ₃ = { $(a, b, c) : a \neq b \land b \neq c \land a \neq c$ }, accepts (1, 2, 3). MINCSP(NEQ₃, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE₃ = {(a, b, c) : $a \neq b \lor b \neq c \lor a \neq c$ }, rejects (1, 1, 1).

 $MinCSP(NAE_3, =) \approx 3$ -Steiner Multicut. W[1]-hard [BHMvL'16], 2-FPA.

1. NEQ₃ = { $(a, b, c) : a \neq b \land b \neq c \land a \neq c$ }, accepts (1, 2, 3). MINCSP(NEQ₃, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE₃ = {(a, b, c) : $a \neq b \lor b \neq c \lor a \neq c$ }, rejects (1, 1, 1). MINCSP(NAE₃, =) \approx 3-STEINER MULTICUT. W[1]-hard [BHMvL'16], 2-FPA.

3. $\mathbf{R}_{\neq}^{d} = \{(a_{1}, b_{1}, \dots, a_{d}, b_{d}) : a_{1} \neq b_{1} \lor \dots \lor a_{d} \neq b_{d}\}.$ MINCSP $(\mathbf{R}_{\neq}^{d}, =)$ reduces to DISJUNCTIVE MULTICUT. W[1]-hard for $d \geq 2$, has constant-factor FPA for all $d \in O(1)$. 1. NEQ₃ = { $(a, b, c) : a \neq b \land b \neq c \land a \neq c$ }, accepts (1, 2, 3). MINCSP(NEQ₃, =) reduced to MULTICUT WITH DELETABLE TRIPLES. FPT.

2. NAE₃ = {(a, b, c) : $a \neq b \lor b \neq c \lor a \neq c$ }, rejects (1, 1, 1). MINCSP(NAE₃, =) \approx 3-STEINER MULTICUT. W[1]-hard [BHMvL'16], 2-FPA.

3. $\mathbf{R}_{\neq}^{d} = \{(a_{1}, b_{1}, \dots, a_{d}, b_{d}) : a_{1} \neq b_{1} \lor \dots \lor a_{d} \neq b_{d}\}.$ MINCSP $(\mathbf{R}_{\neq}^{d}, =)$ reduces to DISJUNCTIVE MULTICUT. W[1]-hard for $d \geq 2$, has constant-factor FPA for all $d \in O(1)$.

4. $ODD_3 = \{(a, b, c) : (a = b = c) \lor (a \neq b \land b \neq c \land a \neq c)\}.$ MINCSP $(ODD_3, =, \neq) \approx_{APX}$ HITTING SET. W[2]-hard, no *c*-FPA.

Classification Theorem

Let Γ be a finite equality constraint language such that CSP(Γ) is in P and MINCSP(Γ) is NP-hard. Then one of the following holds.

- MINCSP(Γ) is in FPT.
- $MINCSP(\Gamma)$ is W[1]-hard but admits constant-factor FPA.
- $MINCSP(\Gamma)$ is W[2]-hard and admits no constant-factor FPA.

 $MinCSP(\Gamma)$ is in FPT if it reduces to MULTICUT WITH DELETABLE TRIPLES, and W[1]-hard otherwise.

MINCSP(Γ) admits constant-factor FPA if it reduces to DISJUNCTIVE MULTICUT, and \approx_{APX} HITTING SET otherwise.

- $MinCSP(\Gamma)$ is in FPT if it reduces to Multicut with Deletable Triples, and W[1]-hard otherwise.
- MINCSP(Γ) admits constant-factor FPA if it reduces to DISJUNCTIVE MULTICUT, and \approx_{APX} HITTING SET otherwise.
- MULTICUT WITH DELETABLE TRIPLES solved using [KKPW'23]. DISJUNCTIVE MULTICUT constant-factor FPA algorithm – coming up.
- The quest guided by equality CSP results of [BK'08] and [BCP'10].

Let G be a graph and \mathcal{L} be a family of *list requests*, where $\mathcal{L} \ni L = \{s_1t_1, \dots, s_dt_d\}.$

A subset $X \subseteq V(G)$ satisfies L if X separates s_1, t_1 or s_2, t_2 or $...s_d, t_d$.

Define $cost(G, \mathcal{L}) = min\{|X| : X \subseteq V(G), \forall L \in \mathcal{L} X \text{ satisfies } L\}.$

DISJUNCTIVE MULTICUT

INSTANCE: Graph G, a family of request lists \mathcal{L} , and integer k.

QUESTION: Is $cost(G, \mathcal{L}) \leq k$?

DISJUNCTIVE MULTICUT INSTANCE: Graph G, a family of request lists \mathcal{L} , and integer k. QUESTION: Is $cost(G, \mathcal{L}) \leq k$?

We allow **singleton** cut requests ss, which are satisfied by X if $s \in X$.

DISJUNCTIVE MULTICUT INSTANCE: Graph G, a family of request lists \mathcal{L} , and integer k. QUESTION: Is $cost(G, \mathcal{L}) \leq k$?

We allow **singleton** cut requests *ss*, which are satisfied by *X* if $s \in X$. HITTING SET \approx_{APX} DJMC: set $\{a, b, c\}$ becomes request list $\{aa, bb, cc\}$. We assume that the lists have at most $d \in O(1)$ entries. 2*d*-HITTING SET is in FPT.

Main idea: design an algorithm $(G, \mathcal{L}) \to (G', \mathcal{L}')$ such that $cost(G', \mathcal{L}') \leq c \cdot cost(G, \mathcal{L})$ and (G', \mathcal{L}') is closer to 2*d*-HITTING SET.

Progress measure $\mu = maximum \# non-singletons$ in a list of \mathcal{L} .

Main idea: design an algorithm $(G, \mathcal{L}) \to (G', \mathcal{L}')$ such that $cost(G', \mathcal{L}') \leq c \cdot cost(G, \mathcal{L})$ and (G', \mathcal{L}') is closer to 2*d*-HITTING SET.

Progress measure $\mu = maximum \# non-singletons$ in a list of \mathcal{L} .

Main idea: design an algorithm $(G, \mathcal{L}) \rightarrow (G', \mathcal{L}')$ such that $cost(G', \mathcal{L}') \leq c \cdot cost(G, \mathcal{L})$ and (G', \mathcal{L}') is closer to 2*d*-HITTING SET. Progress measure μ = maximum # non-singletons in a list of \mathcal{L} . Example: $cost(G, \mathcal{L}) = C$ and d = 4.

$$\begin{array}{rcl} (G,\mathcal{L}) & \rightarrow & (G_1,\mathcal{L}_1) & \rightarrow & (G_2,\mathcal{L}_2) & \rightarrow & (G_3,\mathcal{L}_3) & \rightarrow & (G_4,\mathcal{L}_4) \\ \\ \mathrm{cost} \ C & \rightarrow & \mathrm{cost} \ 3^C & \rightarrow & \mathrm{cost} \ 3^2C & \rightarrow & \mathrm{cost} \ 3^3C & \rightarrow & \mathrm{cost} \ 3^4C \\ \\ \mu = 4 & \rightarrow & \mu = 3 & \rightarrow & \mu = 2 & \rightarrow & \mu = 1 & \rightarrow & \mu = 0 \end{array}$$

Main idea: design an algorithm $(G, \mathcal{L}) \rightarrow (G', \mathcal{L}')$ such that $cost(G', \mathcal{L}') \leq c \cdot cost(G, \mathcal{L})$ and (G', \mathcal{L}') is closer to 2*d*-HITTING SET. Progress measure $\mu = maximum \#$ non-singletons in a list of \mathcal{L} . Example: $cost(G, \mathcal{L}) = C$ and d = 4.

$$\begin{array}{rcl} (G,\mathcal{L}) & \rightarrow & (G_1,\mathcal{L}_1) & \rightarrow & (G_2,\mathcal{L}_2) & \rightarrow & (G_3,\mathcal{L}_3) & \rightarrow & (G_4,\mathcal{L}_4) \\ \\ \mathrm{cost} \ C & \rightarrow & \mathrm{cost} \ 3^C & \rightarrow & \mathrm{cost} \ 3^2C & \rightarrow & \mathrm{cost} \ 3^3C & \rightarrow & \mathrm{cost} \ 3^4C \\ \\ \mu = 4 & \rightarrow & \mu = 3 & \rightarrow & \mu = 2 & \rightarrow & \mu = 1 & \rightarrow & \mu = 0 \end{array}$$

If $cost(G, \mathcal{L}) \leq k$, then $cost(G_4, \mathcal{L}_4) \leq 3^4 k$. If $cost(G, \mathcal{L}) > 3^4 k$, then $cost(G_4, \mathcal{L}_4) > 3^4 k$. We obtain 3^4 -approximation.

1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .
- 5. Let T_{opt} be the set of cut requests satisfied by X_{opt} .

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .
- 5. Let T_{opt} be the set of cut requests satisfied by X_{opt} .
- 6. Let \mathcal{F} be the set of all *st*-walks for $st \in \mathcal{T}_{in} \cap \mathcal{T}_{out}$.

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .
- 5. Let T_{opt} be the set of cut requests satisfied by X_{opt} .
- 6. Let \mathcal{F} be the set of all *st*-walks for $st \in \mathcal{T}_{in} \cap \mathcal{T}_{out}$.
- 7. X_{opt} contains an \mathcal{F} -transversal Y.

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .
- 5. Let T_{opt} be the set of cut requests satisfied by X_{opt} .
- 6. Let \mathcal{F} be the set of all st-walks for $st \in \mathcal{T}_{in} \cap \mathcal{T}_{out}$.
- 7. X_{opt} contains an \mathcal{F} -transversal Y.
- 8. Replace Y with a union Z of important separators^{*}. Note that $Z \cup X_{opt}$ satisfies \mathcal{L} and $|Z \cup X_{opt}| \leq 2|X_{opt}|$.

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .
- 5. Let T_{opt} be the set of cut requests satisfied by X_{opt} .
- 6. Let \mathcal{F} be the set of all st-walks for $st \in \mathcal{T}_{in} \cap \mathcal{T}_{out}$.
- 7. X_{opt} contains an \mathcal{F} -transversal Y.
- 8. Replace Y with a union Z of important separators^{*}. Note that $Z \cup X_{opt}$ satisfies \mathcal{L} and $|Z \cup X_{opt}| \le 2|X_{opt}|$.
- 9. Benefit: decrease μ by removing or replacing every $st \in T_{in}$ with pairs of singletons (examples coming up).

- 1. Iterative compression: X_{in} of size $c_d \cdot k + 1$ that satisfies \mathcal{L} .
- 2. By $2^{O(k)}$ -branching, assume there is X_{opt} such that $X_{in} \cap X_{opt} = \emptyset$.
- 3. At cost $\leq |X_{opt}|$, assume X_{in} has \leq 1 vertex in every connected component of $G X_{opt}$.
- 4. Let T_{in} be the set of cut requests satisfied by X_{in} .
- 5. Let T_{opt} be the set of cut requests satisfied by X_{opt} .
- 6. Let \mathcal{F} be the set of all st-walks for $st \in \mathcal{T}_{in} \cap \mathcal{T}_{out}$.
- 7. X_{opt} contains an \mathcal{F} -transversal Y.
- 8. Replace Y with a union Z of important separators^{*}. Note that $Z \cup X_{opt}$ satisfies \mathcal{L} and $|Z \cup X_{opt}| \leq 2|X_{opt}|$.
- 9. Benefit: decrease μ by removing or replacing every $st \in T_{in}$ with pairs of singletons (examples coming up).
- 10. Cost increased by a factor \leq 3.

DISJUNCTIVE MULTICUT: Shadow Removal

Shadow covering algorithm of [MR'11, CCHM'12] provides $W \subseteq V(G)$ s.t.

- $Z \subseteq W$, and
- if Z disconnects x from $s \in W$, then $s \in Z$.

DISJUNCTIVE MULTICUT: Simplification

Case 1: $L = \{st, \dots\} \rightarrow \{ss, tt, \dots\}.$

DISJUNCTIVE MULTICUT: Simplification

Case 2: $L = \{st, ...\} \rightarrow \{aa, tt, ...\}$ for all $a \in N(H_s) \cap W$.

DISJUNCTIVE MULTICUT: Simplification

Case 3: $L = \{st, ...\} \rightarrow \{aa, bb, ...\}$ for all $a \in N(H_s) \cap W$ and $b \in N(H_t) \cap W$

DISJUNCTIVE MULTICUT with lists of length *d* admits 3^{*d*}-approximation in fpt time.

DISJUNCTIVE MULTICUT with lists of length d admits 3^d -approximation in fpt time.

STEINER MULTICUT admits a much simpler 2^{*O*(*k*)}-time 2-approximation algorithm.

DISJUNCTIVE MULTICUT with lists of length *d* admits 3^{*d*}-approximation in fpt time.

STEINER MULTICUT admits a much simpler 2^{*O*(*k*)}-time 2-approximation algorithm.

We also study MINCSP(Γ^+) for equality constraint languages Γ extended with unit assignments like x = 1, y = 2, etc.

DISJUNCTIVE MULTICUT with lists of length *d* admits 3^{*d*}-approximation in fpt time.

STEINER MULTICUT admits a much simpler 2^{*O*(*k*)}-time 2-approximation algorithm.

We also study MINCSP(Γ^+) for equality constraint languages Γ extended with unit assignments like x = 1, y = 2, etc. Conclusion: MINCSP(Γ^+) is either trivial, equivalent to MINCSP(Γ), equivalent to MINCSP(B) for a Boolean language B, solved by simple branching, solved by reduction to MULTIWAY CUT, or hard.

Classification Theorem

Let Γ be a finite equality constraint language such that CSP(Γ) is in P and MINCSP(Γ) is NP-hard. Then one of the following holds.

- MINCSP(Γ) is in FPT.
- $MINCSP(\Gamma)$ is W[1]-hard but admits constant-factor FPA.
- $MINCSP(\Gamma)$ is W[2]-hard and admits no constant-factor FPA.

Questions?