Parameterized Complexity of Equality Constraint Satisfaction

George Osipov \& Magnus Wahlström
May 2, 2023
Linköping University, Sweden \& Royal Holloway University of London, UK

Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples $\left(d_{1}, \ldots, d_{r}\right) \in D^{r}$, e.g.

- $\{(a, a): a \in D\}$ is the binary equality relation,
- $\{(a, b): a, b \in D, a \neq b\}$ is the binary disequality relation.

Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples $\left(d_{1}, \ldots, d_{r}\right) \in D^{r}$, e.g.

- $\{(a, a): a \in D\}$ is the binary equality relation,
- $\{(a, b): a, b \in D, a \neq b\}$ is the binary disequality relation.

A constraint $R\left(x_{1}, \ldots, x_{r}\right)$ consists of a relation R applied to a tuple of variables (x_{1}, \ldots, x_{r}).

An assignment $\alpha: V(X) \rightarrow D$ satisfies the constraint if $\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{r}\right)\right) \in R$.

Constraint Satisfaction (CSP)

Fix a domain of values D. A relation R is a subset of tuples
$\left(d_{1}, \ldots, d_{r}\right) \in D^{r}$, e.g.

- $\{(a, a): a \in D\}$ is the binary equality relation,
- $\{(a, b): a, b \in D, a \neq b\}$ is the binary disequality relation.

A constraint $R\left(x_{1}, \ldots, x_{r}\right)$ consists of a relation R applied to a tuple of variables (x_{1}, \ldots, x_{r}).

An assignment $\alpha: V(X) \rightarrow D$ satisfies the constraint if $\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{r}\right)\right) \in R$.
A constraint language Γ is a subset of relations.

Constraint Satisfaction (CSP)

Constraint Satisfaction Problem for Г aka CSP(Г)
INSTANCE: A set variables V and a set of constraints C of the form $R\left(x_{1}, \ldots, x_{r}\right)$, where $R \in \Gamma$ and $x_{1}, \ldots, x_{r} \in V$.
QUESTION: Is there an assignment $\alpha: V \rightarrow D$ that satisfies all constraints in C?

Constraint Satisfaction (CSP)

Constraint Satisfaction Problem for 「 aka CSP(Г)

InSTANCE: A set variables V and a set of constraints C of the form $R\left(x_{1}, \ldots, x_{r}\right)$, where $R \in \Gamma$ and $x_{1}, \ldots, x_{r} \in V$.
QUESTION: Is there an assignment $\alpha: V \rightarrow D$ that satisfies all constraints in C?

Example: Consider an instance of $\operatorname{CSP}(=, \neq)$ with domain \mathbb{N} :

$$
x_{1}=x_{2}, x_{2}=x_{3}, x_{3}=x_{4}, x_{1} \neq x_{4} .
$$

This instance is not satisfiable because $x_{1}=x_{2}=x_{3}=x_{4}$ implies $x_{1}=x_{4}$ and contradicts $x_{1} \neq x_{4}$.

MincSP

$\operatorname{MinCSP}(\Gamma)$

Instance: An instance (V, C) of CSP(Γ), and integer k. QUESTION: Is there a subset $X \subseteq C$ of $\leq k$ constraints such that $(V, C \backslash X)$ is satisfiable?

MincSP

$\operatorname{MinCSP}(\Gamma)$

Instance: An instance (V, C) of CSP(Γ), and integer k. QUESTION: Is there a subset $X \subseteq C$ of $\leq k$ constraints such that $(V, C \backslash X)$ is satisfiable?

We study this problem under the natural parameter k.

Equality MINCSP

$\operatorname{MinCSP}(=, \neq)$ with domain \mathbb{N} is equivalent to

Edge Multicut

InSTANCE: Graph G, cut requests $s_{1} t_{1}, \ldots, s_{\ell} t_{\ell}$, and integer k.
QUESTION: Is there $X \subseteq E(G)$ of size $\leq k$ separating s_{i} and t_{i} for all i?
Edge $u v$ becomes $u=v$. Request $s_{i} t_{i}$ becomes $s_{i} \neq t_{i}$.
Edge Multicut is in FPT ([BDT'11], [MR'11]).

Equality MINCSP

An equality constraint relation is any relation definable using \wedge, \vee and predicates $=, \neq$, e.g.
$\{(a, b, c) \mid a, b, c \in \mathbb{N},(a=b \wedge b=c) \vee(a \neq b \wedge b \neq c \wedge a \neq c)\}$.
This relation accepts ($1,1,1$), ($1,2,3$), but rejects $(1,2,2)$.

Equality MINCSP

An equality constraint relation is any relation definable using \wedge, \vee and predicates $=, \neq$, e.g.
$\{(a, b, c) \mid a, b, c \in \mathbb{N},(a=b \wedge b=c) \vee(a \neq b \wedge b \neq c \wedge a \neq c)\}$.
This relation accepts $(1,1,1),(1,2,3)$, but rejects $(1,2,2)$.

We consider $\operatorname{MINCSP}(\Gamma)$ for all finite equality constraint languages Γ. Why?

- It generalizes Edge Multicut, Steiner Multicut, Multiway Cut*.

Equality MINCSP

An equality constraint relation is any relation definable using \wedge, \vee and predicates $=, \neq$, e.g.
$\{(a, b, c) \mid a, b, c \in \mathbb{N},(a=b \wedge b=c) \vee(a \neq b \wedge b \neq c \wedge a \neq c)\}$.
This relation accepts ($1,1,1$), ($1,2,3$), but rejects $(1,2,2)$.

We consider $\operatorname{MINCSP}(\Gamma)$ for all finite equality constraint languages Γ. Why?

- It generalizes Edge Multicut, Steiner Multicut, Multiway Cut*.
- It is a prerequisite for all infinite-domain MINCSP classifications.

Equality MinCSP

An equality constraint relation is any relation definable using \wedge, \vee and predicates $=, \neq$, e.g.
$\{(a, b, c) \mid a, b, c \in \mathbb{N},(a=b \wedge b=c) \vee(a \neq b \wedge b \neq c \wedge a \neq c)\}$.
This relation accepts ($1,1,1$), ($1,2,3$), but rejects $(1,2,2)$.

We consider $\operatorname{MinCSP}(\Gamma)$ for all finite equality constraint languages Γ. Why?

- It generalizes Edge Multicut, Steiner Multicut, Multiway Cut*.
- It is a prerequisite for all infinite-domain MINCSP classifications.
- Full classifications highlight power and limits of fpt algorithms.

Equality MINCSP

An equality constraint relation is any relation definable using \wedge, \vee and predicates $=, \neq$, e.g.
$\{(a, b, c) \mid a, b, c \in \mathbb{N},(a=b \wedge b=c) \vee(a \neq b \wedge b \neq c \wedge a \neq c)\}$.
This relation accepts ($1,1,1$), ($1,2,3$), but rejects $(1,2,2)$.

We consider $\operatorname{MinCSP}(\Gamma)$ for all finite equality constraint languages Γ. Why?

- It generalizes Edge Multicut, Steiner Multicut, Multiway Cut*.
- It is a prerequisite for all infinite-domain MINCSP classifications.
- Full classifications highlight power and limits of fpt algorithms.
- CSP is a nice fragment of NP for obtaining dichotomies.

Some Equality Constraint Relations

1. $\mathrm{NEQ}_{3}=\{(a, b, c): a \neq b \wedge b \neq c \wedge a \neq c\}$, accepts $(1,2,3)$.
$\operatorname{MinCSP}\left(\mathrm{NEQ}_{3},=\right)$ reduced to Multicut with Deletable Triples. FPT.

Some Equality Constraint Relations

1. $\mathrm{NEQ}_{3}=\{(a, b, c): a \neq b \wedge b \neq c \wedge a \neq c\}$, accepts $(1,2,3)$.
$\operatorname{MinCSP}\left(\mathrm{NEQ}_{3},=\right)$ reduced to Multicut with Deletable Triples. FPT.
2. $\mathrm{NAE}_{3}=\{(a, b, c): a \neq b \vee b \neq c \vee a \neq c\}$, rejects $(1,1,1)$.
$\operatorname{MinCSP}\left(\mathrm{NAE}_{3},=\right) \approx 3$-Steiner Multicut. W[1]-hard [BHMvL'16], 2-FPA.

Some Equality Constraint Relations

1. $\mathrm{NEQ}_{3}=\{(a, b, c): a \neq b \wedge b \neq c \wedge a \neq c\}$, accepts $(1,2,3)$.
$\operatorname{MinCSP}\left(\mathrm{NEQ}_{3},=\right)$ reduced to Multicut with Deletable Triples. FPT.
2. $\mathrm{NAE}_{3}=\{(a, b, c): a \neq b \vee b \neq c \vee a \neq c\}$, rejects $(1,1,1)$.
$\operatorname{MInCSP}\left(\mathrm{NAE}_{3},=\right) \approx 3$-Steiner Multicut. W[1]-hard [BHMvL'16], 2-FPA.
3. $R_{\neq}^{d}=\left\{\left(a_{1}, b_{1}, \ldots, a_{d}, b_{d}\right): a_{1} \neq b_{1} \vee \cdots \vee a_{d} \neq b_{d}\right\}$.
$\operatorname{Min} \operatorname{CSP}\left(\mathrm{R}_{\neq}^{d},=\right)$ reduces to Disjunctive Multicut.
W[1]-hard for $d \geq 2$, has constant-factor FPA for all $d \in O$ (1).

Some Equality Constraint Relations

1. $\mathrm{NEQ}_{3}=\{(a, b, c): a \neq b \wedge b \neq c \wedge a \neq c\}$, accepts $(1,2,3)$.
$\operatorname{MinCSP}\left(\mathrm{NEQ}_{3},=\right)$ reduced to Multicut with Deletable Triples. FPT.
2. $\mathrm{NAE}_{3}=\{(a, b, c): a \neq b \vee b \neq c \vee a \neq c\}$, rejects $(1,1,1)$.
$\operatorname{MinCSP}\left(\mathrm{NAE}_{3},=\right) \approx 3$-Steiner Multicut. W[1]-hard [BHMvL'16], 2-FPA.
3. $R_{\neq}^{d}=\left\{\left(a_{1}, b_{1}, \ldots, a_{d}, b_{d}\right): a_{1} \neq b_{1} \vee \cdots \vee a_{d} \neq b_{d}\right\}$.
$\operatorname{Min} \operatorname{CSP}\left(\mathrm{R}_{\neq}^{d},=\right)$ reduces to DISJunctive Multicut.
W[1]-hard for $d \geq 2$, has constant-factor FPA for all $d \in O$ (1).
4. $\mathrm{ODD}_{3}=\{(a, b, c):(a=b=c) \vee(a \neq b \wedge b \neq c \wedge a \neq c)\}$.
$\operatorname{MinCSP}\left(\mathrm{ODD}_{3},=, \neq\right) \approx_{\text {APX }}$ Hitting SET. W[2]-hard, no c-FPA.

Full Classification

Classification Theorem

Let Γ be a finite equality constraint language such that $\operatorname{CSP}(\Gamma)$ is in P and $\operatorname{MinCSP}(\Gamma)$ is NP-hard. Then one of the following holds.

- $\operatorname{MinCSP}(\Gamma)$ is in FPT.
- $\operatorname{MINCSP}(\Gamma)$ is $W[1]$-hard but admits constant-factor FPA.
- $\operatorname{MinCSP}(\Gamma)$ is W[2]-hard and admits no constant-factor FPA.

Full Classification Details

$\operatorname{MinCSP}(\Gamma)$ is in FPT if it reduces to Multicut with Deletable Triples, and W[1]-hard otherwise.

MinCSP(Г) admits constant-factor FPA if it reduces to DISJunctive Multicut, and $\approx_{\text {APx }}$ Hitting SET otherwise.

Full Classification Details

$\operatorname{MinCSP}(\Gamma)$ is in FPT if it reduces to Multicut with Deletable Triples, and W[1]-hard otherwise.

MinCSP(Г) admits constant-factor FPA if it reduces to Disjunctive Multicut, and $\approx_{\text {APx }}$ Hitting Set otherwise.

Multicut with Deletable Triples solved using [KKPW'23].
DISJunctive Multicut constant-factor FPA algorithm - coming up.
The quest guided by equality CSP results of [BK'08] and [BCP'10].

Disjunctive Multicut

Let G be a graph and \mathcal{L} be a family of list requests, where $\mathcal{L} \ni L=\left\{s_{1} t_{1}, \ldots, s_{d} t_{d}\right\}$.
A subset $X \subseteq V(G)$ satisfies L if X separates s_{1}, t_{1} or s_{2}, t_{2} or $\ldots s_{d}, t_{d}$.
Define $\operatorname{cost}(G, \mathcal{L})=\min \{|X|: X \subseteq V(G), \forall L \in \mathcal{L} X$ satisfies $L\}$.

Disjunctive Multicut

InSTANCE: Graph G, a family of request lists \mathcal{L}, and integer k.
QUESTION: IS $\operatorname{cost}(G, \mathcal{L}) \leq k$?

DISJUNCTIVE MULTICUT

Disjunctive Multicut

INSTANCE: Graph G, a family of request lists \mathcal{L}, and integer k.
QUESTION: IS $\operatorname{cost}(G, \mathcal{L}) \leq k$?
We allow singleton cut requests $s s$, which are satisfied by X if $s \in X$.

Disjunctive Multicut

Disjunctive Multicut

INSTANCE: Graph G, a family of request lists \mathcal{L}, and integer k.
QUESTION: IS $\operatorname{cost}(G, \mathcal{L}) \leq k$?
We allow singleton cut requests $s s$, which are satisfied by X if $s \in X$. Hitting Set $\approx_{\text {apx }}$ DJMC: set $\{a, b, c\}$ becomes request list $\{a a, b b, c c\}$.

We assume that the lists have at most $d \in O(1)$ entries.
2d-Hitting Set is in FPT.

DISJunctive Multicut

Main idea: design an algorithm $(G, \mathcal{L}) \rightarrow\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ such that $\operatorname{cost}\left(G^{\prime}, \mathcal{L}^{\prime}\right) \leq c \cdot \operatorname{cost}(G, \mathcal{L})$ and $\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ is closer to $2 d$-HITTING SET. Progress measure $\mu=$ maximum \# non-singletons in a list of \mathcal{L}.

DISJunctive Multicut

Main idea: design an algorithm $(G, \mathcal{L}) \rightarrow\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ such that $\operatorname{cost}\left(G^{\prime}, \mathcal{L}^{\prime}\right) \leq c \cdot \operatorname{cost}(G, \mathcal{L})$ and $\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ is closer to $2 d$-HITTING SET. Progress measure $\mu=$ maximum \# non-singletons in a list of \mathcal{L}.

Disjunctive Multicut

Main idea: design an algorithm $(G, \mathcal{L}) \rightarrow\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ such that $\operatorname{cost}\left(G^{\prime}, \mathcal{L}^{\prime}\right) \leq c \cdot \operatorname{cost}(G, \mathcal{L})$ and $\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ is closer to $2 d$-HITTING SET.
Progress measure $\mu=$ maximum \# non-singletons in a list of \mathcal{L}.
Example: $\operatorname{cost}(G, \mathcal{L})=C$ and $d=4$.

$$
\begin{aligned}
& (G, \mathcal{L}) \rightarrow\left(G_{1}, \mathcal{L}_{1}\right) \rightarrow\left(G_{2}, \mathcal{L}_{2}\right) \rightarrow\left(G_{3}, \mathcal{L}_{3}\right) \rightarrow\left(G_{4}, \mathcal{L}_{4}\right) \\
& \operatorname{cost} \mathrm{C} \rightarrow \operatorname{cost} 3 \mathrm{C} \rightarrow \operatorname{cost} 3^{2} \mathrm{C} \rightarrow \operatorname{cost} 3^{3} \mathrm{C} \rightarrow \operatorname{cost} 3^{4} \mathrm{C} \\
& \mu=4 \quad \rightarrow \quad \mu=3 \quad \rightarrow \quad \mu=2 \quad \rightarrow \quad \mu=1 \quad \rightarrow \quad \mu=0
\end{aligned}
$$

Disjunctive Multicut

Main idea: design an algorithm $(G, \mathcal{L}) \rightarrow\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ such that $\operatorname{cost}\left(G^{\prime}, \mathcal{L}^{\prime}\right) \leq c \cdot \operatorname{cost}(G, \mathcal{L})$ and $\left(G^{\prime}, \mathcal{L}^{\prime}\right)$ is closer to $2 d$-HITTING SET.

Progress measure $\mu=$ maximum \# non-singletons in a list of \mathcal{L}.
Example: $\operatorname{cost}(G, \mathcal{L})=C$ and $d=4$.

$$
\begin{aligned}
& (G, \mathcal{L}) \rightarrow\left(G_{1}, \mathcal{L}_{1}\right) \rightarrow\left(G_{2}, \mathcal{L}_{2}\right) \rightarrow\left(G_{3}, \mathcal{L}_{3}\right) \rightarrow\left(G_{4}, \mathcal{L}_{4}\right) \\
& \operatorname{cost} \mathrm{C} \rightarrow \operatorname{cost} 3 \mathrm{C} \rightarrow \operatorname{cost} 3^{2} \mathrm{C} \rightarrow \operatorname{cost} 3^{3} \mathrm{C} \rightarrow \operatorname{cost} 3^{4} \mathrm{C} \\
& \mu=4 \quad \rightarrow \quad \mu=3 \quad \rightarrow \quad \mu=2 \quad \rightarrow \quad \mu=1 \quad \rightarrow \quad \mu=0
\end{aligned}
$$

If $\operatorname{cost}(G, \mathcal{L}) \leq k$, then $\operatorname{cost}\left(G_{4}, \mathcal{L}_{4}\right) \leq 3^{4} k$.
If $\operatorname{cost}(G, \mathcal{L})>3^{4} k$, then $\operatorname{cost}\left(G_{4}, \mathcal{L}_{4}\right)>3^{4} k$.
We obtain 3^{4}-approximation.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{\text {in }}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{i n}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{O(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{i n}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{O(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{o p t}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{i n}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{\text {in }}$.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{i n}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{i n}$.
5. Let $\mathcal{T}_{\text {opt }}$ be the set of cut requests satisfied by $X_{\text {opt }}$.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{i n}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{i n}$.
5. Let $\mathcal{T}_{\text {opt }}$ be the set of cut requests satisfied by $X_{\text {opt }}$.
6. Let \mathcal{F} be the set of all st-walks for st $\in \mathcal{T}_{\text {in }} \cap \mathcal{T}_{\text {out }}$.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{\text {in }}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{\text {in }}$.
5. Let $\mathcal{T}_{\text {opt }}$ be the set of cut requests satisfied by $X_{\text {opt }}$.
6. Let \mathcal{F} be the set of all st-walks for st $\in \mathcal{T}_{\text {in }} \cap \mathcal{T}_{\text {out }}$.
7. $X_{\text {opt }}$ contains an \mathcal{F}-transversal Y.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{\text {in }}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{\text {in }}$.
5. Let $\mathcal{T}_{\text {opt }}$ be the set of cut requests satisfied by $X_{\text {opt }}$.
6. Let \mathcal{F} be the set of all st-walks for st $\in \mathcal{T}_{\text {in }} \cap \mathcal{T}_{\text {out }}$.
7. $X_{\text {opt }}$ contains an \mathcal{F}-transversal Y.
8. Replace Y with a union Z of important separators*. Note that $Z \cup X_{\text {opt }}$ satisfies \mathcal{L} and $\left|Z \cup X_{\text {opt }}\right| \leq 2\left|X_{\text {opt }}\right|$.

Disjunctive Multicut: Outline

1. Iterative compression: $X_{\text {in }}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{\text {in }}$.
5. Let $\mathcal{T}_{\text {opt }}$ be the set of cut requests satisfied by $X_{\text {opt }}$.
6. Let \mathcal{F} be the set of all st-walks for st $\in \mathcal{T}_{\text {in }} \cap \mathcal{T}_{\text {out }}$.
7. $X_{\text {opt }}$ contains an \mathcal{F}-transversal Y.
8. Replace Y with a union Z of important separators*. Note that $Z \cup X_{\text {opt }}$ satisfies \mathcal{L} and $\left|Z \cup X_{\text {opt }}\right| \leq 2\left|X_{\text {opt }}\right|$.
9. Benefit: decrease μ by removing or replacing every st $\in \mathcal{T}_{\text {in }}$ with pairs of singletons (examples coming up).

Disjunctive Multicut: Outline

1. Iterative compression: $X_{\text {in }}$ of size $c_{d} \cdot k+1$ that satisfies \mathcal{L}.
2. By $2^{0(k)}$-branching, assume there is $X_{\text {opt }}$ such that $X_{\text {in }} \cap X_{\text {opt }}=\emptyset$.
3. At cost $\leq\left|X_{\text {opt }}\right|$, assume $X_{\text {in }}$ has ≤ 1 vertex in every connected component of $G-X_{\text {opt }}$.
4. Let $\mathcal{T}_{\text {in }}$ be the set of cut requests satisfied by $X_{\text {in }}$.
5. Let $\mathcal{T}_{\text {opt }}$ be the set of cut requests satisfied by $X_{\text {opt }}$.
6. Let \mathcal{F} be the set of all st-walks for $s t \in \mathcal{T}_{\text {in }} \cap \mathcal{T}_{\text {out }}$.
7. $X_{\text {opt }}$ contains an \mathcal{F}-transversal Y.
8. Replace Y with a union Z of important separators*. Note that $Z \cup X_{\text {opt }}$ satisfies \mathcal{L} and $\left|Z \cup X_{\text {opt }}\right| \leq 2\left|X_{\text {opt }}\right|$.
9. Benefit: decrease μ by removing or replacing every st $\in \mathcal{T}_{\text {in }}$ with pairs of singletons (examples coming up).
10. Cost increased by a factor ≤ 3.

Disjunctive Multicut: Shadow Removal

Shadow covering algorithm of [MR'11, CCHM'12] provides $W \subseteq V(G)$ s.t.

- $Z \subseteq W$, and
- if Z disconnects x from $s \in W$, then $s \in Z$.

Disjunctive Multicut: Simplification

Case 1: $L=\{s t, \ldots\} \rightarrow\{s s, t t, \ldots\}$.

Disjunctive Multicut: Simplification

Case 2: $L=\{s t, \ldots\} \rightarrow\{a a, t t, \ldots\}$ for all $a \in N\left(H_{s}\right) \cap W$.

Disjunctive Multicut: Simplification

Case 3: $L=\{s t, \ldots\} \rightarrow\{a a, b b, \ldots\}$ for all $a \in N\left(H_{s}\right) \cap W$ and $b \in N\left(H_{t}\right) \cap W$

Wrap-up

Theorem

DISJunctive Multicut with lists of length d admits 3^{d}-approximation in fpt time.

Wrap-up

Theorem

Disjunctive Multicut with lists of length d admits 3^{d}-approximation in fpt time.

Steiner Multicut admits a much simpler $2^{O(k)}$-time 2-approximation algorithm.

Wrap-up

Theorem

DISJunctive Multicut with lists of length d admits 3^{d}-approximation in fpt time.

Steiner Multicut admits a much simpler $2^{O(k)}$-time 2-approximation algorithm.
We also study $\operatorname{MiNCSP}\left(\Gamma^{+}\right)$for equality constraint languages Γ extended with unit assignments like $x=1, y=2$, etc.

Wrap-up

Theorem

Disjunctive Multicut with lists of length d admits 3^{d}-approximation in fpt time.

Steiner Multicut admits a much simpler $2^{O(k)}$-time 2-approximation algorithm.
We also study $\operatorname{MiNCSP}\left(\Gamma^{+}\right)$for equality constraint languages Γ extended with unit assignments like $x=1, y=2$, etc. Conclusion: $\operatorname{MinCSP}\left(\Gamma^{+}\right)$is either trivial, equivalent to $\operatorname{MinCSP}(\Gamma)$, equivalent to $\operatorname{MinCSP}(B)$ for a Boolean language B, solved by simple branching, solved by reduction to Multiway Cut, or hard.

Questions?

Classification Theorem

Let Γ be a finite equality constraint language such that $\operatorname{CSP}(\Gamma)$ is in P and $\operatorname{MinCSP}(\Gamma)$ is NP-hard. Then one of the following holds.

- $\operatorname{MinCSP}(\Gamma)$ is in FPT.
- $\operatorname{MINCSP}(\Gamma)$ is $W[1]$-hard but admits constant-factor FPA.
- MInCSP(Γ) is W[2]-hard and admits no constant-factor FPA.

Questions?

