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Overview

Simple Temporal Problem (STP) is an influential formalism
for encoding and reasoning about temporal relations.

STP constraints: a ≤ xi − xj ≤ b, where xi, xj represent
points in time and a, b are rational or infinite values.

STP consistency can be checked in polynomial time.

But what if STP constraints are inconsistent?

We study Almost STP: the problem of resolving few
inconsistencies using tools from parameterized complexity.

For two large classes of STP constraints (one-sided and
equation constraints), we find fpt algorithms.

We determine complexity of all classes of STP constraints.
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Simple Temporal Problem (STP)

Introduced by Dechter, Meiri, and Pearl in 1989.

Objects: points in time x1, x2, . . . , xn.

Constraints: a ≤ xi − xj ≤ b, where a, b ∈ Q ∪ {−∞,∞}.

Examples of constraints:

1 ≤ xi − xj ≤ 2,

−∞ ≤ xi − xj ≤ −2 (one-sided),

1 ≤ xi − xj ≤ ∞ (one-sided),

1 ≤ xi − xj ≤ 1 ≡ xi − xj = 1 (equation).
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Simple Temporal Problem (STP)

Checking consistency requires polynomial time.

−1 ≤ d− a ≤ 4

2 ≤ b− a ≤ 4

2 ≤ c− b ≤ 3

1 ≤ e− d ≤ 2

2 ≤ b− d ≤ ∞
−∞ ≤ c− e ≤ 1

−∞ ≤ b− e ≤ 3.
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Consistent if and only if contains no negative cycles.
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Almost STP

How to deal with with inconsistent instances?

Remove some constraints to achieve consistency.

Call this problem Almost STP.

Almost STP is NP-hard.

Restrict the set of allowed constraints.

Almost STP is in P only when restricted to trivial
constraints (a ≤ xi − xj ≤ b, where a ≤ 0 ≤ b) and
NP-hard otherwise.

Assume that removing few constraints is enough.

Study complexity of Almost STP parameterized by k –
number of constraints to be removed.
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Parameterized Complexity

k-Vertex Cover

Cover all edges with k vertices.

Solvable in f(k) · poly(n) time.

In FPT.

k-Independent Set

Find k non-adjacent vertices.

Solvable in nO(k) time.

W[1]-hard.

Conjecture

FPT ̸= W[1]
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Parameterized Complexity Classes
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Back to Almost STP

Let S contain a ≤ xi − xj ≤ b for all a, b ∈ Q ∪ {−∞,∞}.
For every subset A of S, what is the parameterized
complexity of Almost STP restricted to A?

Some subsets of S:
Trivial constraints: a ≤ xi − xj ≤ b, where a ≤ 0 ≤ b.
One-sided constraints: a ≤ xi − xj , where a ≥ 0.
Equation constraints: a ≤ xi − xj ≤ a ≡ xi − xj = a.

1 ≤ xi − xj ≤ 2 is not trivial, one-sided or equation.
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Classification Theorem

Theorem

Almost STP restricted to A ⊆ S is

1 in constant time if A only contains trivial constraints,

2 in FPT if A only contains one-sided constraints,

3 in FPT if A only contains equation constraints, and

4 W[1]-hard otherwise.

Dabrowski, Jonsson, Ordyniak, Osipov Resolving Inconsistencies in STPs



Classification Theorem

Theorem

Almost STP restricted to A ⊆ S is

1 in constant time if A only contains trivial constraints,

2 in FPT if A only contains one-sided constraints,

3 in FPT if A only contains equation constraints, and

4 W[1]-hard otherwise.

Dabrowski, Jonsson, Ordyniak, Osipov Resolving Inconsistencies in STPs



Classification Theorem

Theorem

Almost STP restricted to A ⊆ S is

1 in constant time if A only contains trivial constraints,

2 in FPT if A only contains one-sided constraints,

3 in FPT if A only contains equation constraints, and

4 W[1]-hard otherwise.

Dabrowski, Jonsson, Ordyniak, Osipov Resolving Inconsistencies in STPs



One-sided constraints

Examples: 0 ≤ d− a, 1 ≤ d− e, 2 ≤ c− b, . . .

a

b

c

d

e

0

-2

0

0

-3

-1

-1

At most one arc for every pair.

Labels either zero or negative.

Negative cycles are bad.

Zero cycles are OK.

All cycles with at least one
negative arc are bad.

Goal: find k arcs that intersect
every cycle with a negative arc.

In FPT by Chitnis et al.
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Classification Theorem

Theorem

Almost STP restricted to A ⊆ S is

1 in constant time if A only contains trivial constraints,

2 in FPT if A only contains one-sided constraints,
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Equations

a

b c

d

ef

a

b c

d

ef

1

2

3

2

1

3

2-1

-2

-3

-2

-1

-3 -2

a− b = 1: a
1−→ b, b

−1−→ a.

Values propagate.

Nonzero cycles are bad.

Goal: find k arcs that intersect
every nonzero cycle.

High level idea: use iterative
compression and multicut to
separate “conflicting” variables.
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W[1]-hard Cases (1/3)

Theorem (Göke et al.)

If A contains xi − xj ≤ 1 and xi − xj ≥ 1, then AlmostSTP
restricted to A is W[1]-hard.

xi − xj ≤ 2 and xi − xj ≥ 2 imply W[1]-hardness.

What about xi − xj ≤ 2 and xi − xj ≥ 3?

xi − xj ≤ 2 implements xi − xj ≤ 6:
xi − y ≤ 2, y − y′ ≤ 2, y′ − xj ≤ 2.

xi − xj ≥ 3 implements xi − xj ≥ 6.

xi − xj ≤ 6 and xi − xj ≥ 6 imply W[1]-hardness.
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W[1]-hard Cases (2/3)

Lemma

If A contains xi − xj ≤ a and xi − xj ≥ b for any a, b ∈ Q>0,
then AlmostSTP restricted to A is W[1]-hard.

What about 1 ≤ xi − xj ≤ 2?

We can express xi − xj = 2:
1 ≤ xi − xj ≤ 2, 2 ≤ xi − xj ≤ 4.

1 ≤ xi − xj ≤ 2 implements 2 ≤ xi − xj ≤ 2n+ 2 ∀n ∈ N:
y − xi = 2n− 2, 2n ≤ y − xj ≤ 4n.

For large enough n (in O(#variables)), 2n+ 2 ≈ ∞ in STP.

1 ≤ xi − xj ≤ 2 expresses xi − xj ≤ 2 and xi − xj ≥ 2.
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W[1]-hard Cases (3/3)

Lemma

If A contains
(a) xi − xj ≤ a and xi − xj ≥ b for any a, b ∈ Q>0, or
(b) a ≤ xi − xj ≤ b for some 0 < a < b < ∞,
then AlmostSTP restricted to A is W[1]-hard.

Finally, we prove that if A is not trivial, one-sided, or equation,
then it either implements two constraints from (a) or the
constraint from (b).
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Questions for Future

What if we allow unary constraints, e.g. 1 ≤ xi ≤ 3?

What if we allow strict constraints, e.g. 1 < xi − xj ≤ 2?

For which other problems X is Almost X interesting?

Almost STP assumes that the additive error is small.
What about the multiplicative error? Can we check if
(1− ϵ) fraction of STP constraints are consistent? This
question is asking about robust approximation.
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Thank you!
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