Resolving Inconsistencies in Simple Temporal Problems

A Parameterized Approach

Konrad K. Dabrowski ${ }^{1}$ Peter Jonsson ${ }^{2}$ Sebastian Ordyniak ${ }^{3}$ George Osipov ${ }^{2}$
${ }^{1}$ Newcastle University, UK
${ }^{2}$ Linköping University, Sweden
${ }^{3}$ University of Leeds, UK

AAAI 2022

Overview

- Simple Temporal Problem (STP) is an influential formalism for encoding and reasoning about temporal relations.
- STP constraints: $a \leq x_{i}-x_{j} \leq b$, where x_{i}, x_{j} represent points in time and a, b are rational or infinite values.
- STP consistency can be checked in polynomial time.

■ But what if STP constraints are inconsistent?

- We study Almost STP: the problem of resolving few inconsistencies using tools from parameterized complexity.
■ For two large classes of STP constraints (one-sided and equation constraints), we find fpt algorithms.
- We determine complexity of all classes of STP constraints.

Simple Temporal Problem (STP)

Introduced by Dechter, Meiri, and Pearl in 1989.
Objects: points in time $x_{1}, x_{2}, \ldots, x_{n}$.
Constraints: $a \leq x_{i}-x_{j} \leq b$, where $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
Examples of constraints:

Simple Temporal Problem (STP)

Introduced by Dechter, Meiri, and Pearl in 1989.
Objects: points in time $x_{1}, x_{2}, \ldots, x_{n}$.
Constraints: $a \leq x_{i}-x_{j} \leq b$, where $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
Examples of constraints:

$$
\begin{array}{rlrr}
1 & \leq x_{i}-x_{j} & \leq 2 \\
-\infty & \leq x_{i}-x_{j} & \leq-2 \\
1 & \leq x_{i}-x_{j} & \leq \infty \\
1 & \leq x_{i}-x_{j} & \leq 1 & \\
\text { (one-sided) } \\
\text { (one-sided) } \\
\text { (equation). }
\end{array}
$$

Simple Temporal Problem (STP)

Checking consistency requires polynomial time.

Consistent if and only if contains no negative cycles.

Simple Temporal Problem (STP)

Checking consistency requires polynomial time.

$$
\begin{aligned}
-1 & \leq d-a \leq 4 \\
2 & \leq b-a \leq 4 \\
2 & \leq c-b \leq 3 \\
1 & \leq e-d \leq 2 \\
2 \leq b-d & \leq \infty \\
-\infty & \leq c-e \leq 1 \\
-\infty & \leq b-e \leq 3
\end{aligned}
$$

Consistent if and only if contains no negative cycles.

Simple Temporal Problem (STP)

Checking consistency requires polynomial time.

$$
\begin{aligned}
&-1 \leq d-a \leq 4 \\
& 2 \leq b-a \leq 4 \\
& 2 \leq c-b \leq 3 \\
& 1 \leq e-d \leq 2 \\
& 2 \leq b-d \leq \infty \\
&-\infty \leq c-e \leq 1 \\
&-\infty \leq b-e \leq 3
\end{aligned}
$$

Consistent if and only if contains no negative cycles.

Simple Temporal Problem (STP)

Checking consistency requires polynomial time.

$$
\begin{aligned}
&-1 \leq d-a \leq 4 \\
& 2 \leq b-a \leq 4 \\
& 2 \leq c-b \leq 3 \\
& 1 \leq e-d \leq 2 \\
& 2 \leq b-d \leq \infty \\
&-\infty \leq c-e \leq 1 \\
&-\infty \leq b-e \leq 3
\end{aligned}
$$

Consistent if and only if contains no negative cycles.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.
- Call this problem Almost STP.
- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough.
- Study complexity of Almost STP parameterized by k number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.
- Call this problem Almost STP.
- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough.
- Study complexity of Almost STP parameterized by k number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.

■ Call this problem Almost STP.

- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough.
- Study complexity of Almost STP parameterized by k number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.

■ Call this problem Almost STP.

- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough. - Study complexity of Almost STP parameterized by k number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.

■ Call this problem Almost STP.

- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough. - Study complexity of Almost STP parameterized by k number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.

■ Call this problem Almost STP.

- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough. number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.

■ Call this problem Almost STP.

- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough.

> number of constraints to be removed.

Almost STP

■ How to deal with with inconsistent instances?

- Remove some constraints to achieve consistency.

■ Call this problem Almost STP.

- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints ($a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$) and NP-hard otherwise.
- Assume that removing few constraints is enough.

■ Study complexity of Almost STP parameterized by k number of constraints to be removed.

Parameterized Complexity

k-Vertex Cover

k-Independent Set

Cover all edges with k vertices. Find k non-adjacent vertices.

Conjecture

Parameterized Complexity

k-Vertex Cover

k-Independent Set

Cover all edges with k vertices. Find k non-adjacent vertices.

Conjecture

Parameterized Complexity

k-Vertex Cover

k-Independent Set

Cover all edges with k vertices. Find k non-adjacent vertices. Solvable in $f(k) \cdot \operatorname{poly}(n)$ time. Solvable in $n^{O(k)}$ time.

Parameterized Complexity

k-Vertex Cover

k-Independent Set

Cover all edges with k vertices. Find k non-adjacent vertices. Solvable in $f(k) \cdot \operatorname{poly}(n)$ time. Solvable in $n^{O(k)}$ time. In FPT.

W[1]-hard.

Parameterized Complexity

k-Vertex Cover

k-Independent Set

Cover all edges with k vertices. Find k non-adjacent vertices. Solvable in $f(k) \cdot \operatorname{poly}(n)$ time. Solvable in $n^{O(k)}$ time. In FPT.

Conjecture

$\mathrm{FPT} \neq \mathrm{W}[1]$

Parameterized Complexity Classes

Back to Almost STP

$■$ Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$. - For every subset \mathcal{A} of \mathcal{S}, what is the parameterized
complexity of Almost STP restricted to \mathcal{A} ? - Some subsets of \mathcal{S} :
$\square 1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Back to Almost STP

■ Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
■ For every subset \mathcal{A} of \mathcal{S}, what is the parameterized complexity of Almost STP restricted to \mathcal{A} ?

- $1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Back to Almost STP

■ Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
■ For every subset \mathcal{A} of \mathcal{S}, what is the parameterized complexity of Almost STP restricted to \mathcal{A} ?
■ Some subsets of \mathcal{S} :

- One-sided constraints: $a \leq x_{i}-x_{j}$, where $a \geq 0$.
- Equation constraints: $a \leq x_{i}-x_{j} \leq a \equiv x_{i}-x_{j}=a$.
- $1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Back to Almost STP

■ Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
■ For every subset \mathcal{A} of \mathcal{S}, what is the parameterized complexity of Almost STP restricted to \mathcal{A} ?

- Some subsets of \mathcal{S} :
- Trivial constraints: $a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$.
$\square 1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Back to Almost STP

■ Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
■ For every subset \mathcal{A} of \mathcal{S}, what is the parameterized complexity of Almost STP restricted to \mathcal{A} ?

- Some subsets of \mathcal{S} :
- Trivial constraints: $a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$.
- One-sided constraints: $a \leq x_{i}-x_{j}$, where $a \geq 0$.
$\square 1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Back to Almost STP

- Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.

■ For every subset \mathcal{A} of \mathcal{S}, what is the parameterized complexity of Almost STP restricted to \mathcal{A} ?

- Some subsets of \mathcal{S} :
- Trivial constraints: $a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$.
- One-sided constraints: $a \leq x_{i}-x_{j}$, where $a \geq 0$.
- Equation constraints: $a \leq x_{i}-x_{j} \leq a \equiv x_{i}-x_{j}=a$.
- $1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Back to Almost STP

■ Let \mathcal{S} contain $a \leq x_{i}-x_{j} \leq b$ for all $a, b \in \mathbb{Q} \cup\{-\infty, \infty\}$.
■ For every subset \mathcal{A} of \mathcal{S}, what is the parameterized complexity of Almost STP restricted to \mathcal{A} ?

- Some subsets of \mathcal{S} :
- Trivial constraints: $a \leq x_{i}-x_{j} \leq b$, where $a \leq 0 \leq b$.
- One-sided constraints: $a \leq x_{i}-x_{j}$, where $a \geq 0$.
- Equation constraints: $a \leq x_{i}-x_{j} \leq a \equiv x_{i}-x_{j}=a$.
- $1 \leq x_{i}-x_{j} \leq 2$ is not trivial, one-sided or equation.

Classification Theorem

Theorem

Almost STP restricted to $\mathcal{A} \subseteq \mathcal{S}$ is
1 in constant time if \mathcal{A} only contains trivial constraints,
$\mathbf{2}$ in FPT if \mathcal{A} only contains one-sided constraints,
3 in FPT if \mathcal{A} only contains equation constraints, and
4 W[1]-hard otherwise.

Classification Theorem

Theorem

Almost STP restricted to $\mathcal{A} \subseteq \mathcal{S}$ is
1 in constant time if \mathcal{A} only contains trivial constraints,
$\mathbf{2}$ in FPT if \mathcal{A} only contains one-sided constraints,
3 in FPT if \mathcal{A} only contains equation constraints, and
4 W[1]-hard otherwise.

Classification Theorem

Theorem

Almost STP restricted to $\mathcal{A} \subseteq \mathcal{S}$ is
1 in constant time if \mathcal{A} only contains trivial constraints,
$\mathbf{2}$ in FPT if \mathcal{A} only contains one-sided constraints,
3 in FPT if \mathcal{A} only contains equation constraints, and
4 W[1]-hard otherwise.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.
- Zero cycles are OK.
- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
- In FPT by Chitnis et al.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.
- Zero cycles are OK.
- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
- In FPT by Chitnis et al.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.

■ Labels either zero or negative.

- Negative cycles are bad.
- Zero cycles are OK.
- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
- In FPT by Chitnis et al.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.
- Zero cycles are OK.
- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
n In FPT by Chitnis et al.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.
- Zero cycles are OK.
- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
■ In FPT by Chitnis et al.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.
- Zero cycles are OK.
- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
- In FPT by Chitnis et al.

One-sided constraints

Examples: $0 \leq d-a, 1 \leq d-e, 2 \leq c-b, \ldots$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.

■ Zero cycles are OK.

- All cycles with at least one negative arc are bad.
- Goal: find k arcs that intersect every cycle with a negative arc.
■ In FPT by Chitnis et al.

Classification Theorem

Theorem

Almost STP restricted to $\mathcal{A} \subseteq \mathcal{S}$ is
1 in constant time if \mathcal{A} only contains trivial constraints,
$\mathbf{2}$ in FPT if \mathcal{A} only contains one-sided constraints,
3 in FPT if \mathcal{A} only contains equation constraints, and
4 W[1]-hard otherwise.

Equations

$\square a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.

- Values propagate.
- Nonzero cycles are bad.
- Goal: find k ares that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.

- Values propagate.
- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.
■ Values propagate. E.g., set $a=1$.

- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.
■ Values propagate. E.g., set $a=1$.

- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.
■ Values propagate. E.g., set $a=1$.

- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.
■ Values propagate. E.g., set $a=1$.

- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.

- Values propagate.
- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.

- Values propagate.
- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Equations

■ $a-b=1: a \xrightarrow{1} b, b \xrightarrow{-1} a$.

- Values propagate.
- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Classification Theorem

Theorem

Almost STP restricted to $\mathcal{A} \subseteq \mathcal{S}$ is
1 in constant time if \mathcal{A} only contains trivial constraints,
$\mathbf{2}$ in FPT if \mathcal{A} only contains one-sided constraints,
3 in FPT if \mathcal{A} only contains equation constraints, and
4 W[1]-hard otherwise.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply W[1]-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j}<6$ and $x_{i}-x_{j} \geq 6$ imnly W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
$x_{i}-y \leq 2, y-y^{\prime} \leq 2, y^{\prime}-x_{j} \leq 2$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
$x_{i}-y \leq 2, y-y^{\prime} \leq 2, y^{\prime}-x_{j} \leq 2$.
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply W[1]-hardness.

W[1]-hard Cases ($1 / 3$)

Theorem (Göke et al.)

If \mathcal{A} contains $x_{i}-x_{j} \leq 1$ and $x_{i}-x_{j} \geq 1$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$ imply $\mathrm{W}[1]$-hardness.
- What about $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 3$?
- $x_{i}-x_{j} \leq 2$ implements $x_{i}-x_{j} \leq 6$:
$x_{i}-y \leq 2, y-y^{\prime} \leq 2, y^{\prime}-x_{j} \leq 2$.
- $x_{i}-x_{j} \geq 3$ implements $x_{i}-x_{j} \geq 6$.
- $x_{i}-x_{j} \leq 6$ and $x_{i}-x_{j} \geq 6$ imply $\mathrm{W}[1]$-hardness.

W[1]-hard Cases ($2 / 3$)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:

■ $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:

- For large enough n (in $O($ \#variables $)$), $2 n+2 \approx \infty$ in STP.

■ $1 \leq x_{i}-x_{j} \leq 2$ expresses $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$.

W[1]-hard Cases ($2 / 3$)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:

■ $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:

- For large enough n (in O (\#variables $)$), $2 n+2 \approx \infty$ in STP.

■ $1 \leq x_{i}-x_{j} \leq 2$ expresses $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$.

W[1]-hard Cases ($2 / 3$)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:
- $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:
- For large enough n (in O (\#variables) $), 2 n+2 \approx \infty$ in STP.
- $1 \leq x_{i}-x_{j} \leq 2$ expresses $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$.

W[1]-hard Cases ($2 / 3$)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:

$$
1 \leq x_{i}-x_{j} \leq 2,2 \leq x_{i}-x_{j} \leq 4
$$

- For large enough n (in O (\#variables) $), 2 n+2 \approx \infty$ in STP.

■ $1 \leq x_{i}-x_{j} \leq 2$ expresses $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$.

W[1]-hard Cases ($2 / 3$)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:
$1 \leq x_{i}-x_{j} \leq 2,2 \leq x_{i}-x_{j} \leq 4$.
■ $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:
- For large enough n (in $O($ \#variables $)$), $2 n+2 \approx \infty$ in STP.

■ $1 \leq x_{i}-x_{j} \leq 2$ expresses $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$.

W[1]-hard Cases ($2 / 3$)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:
$1 \leq x_{i}-x_{j} \leq 2,2 \leq x_{i}-x_{j} \leq 4$.
■ $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:
$y-x_{i}=2 n-2,2 n \leq y-x_{j} \leq 4 n$.

W[1]-hard Cases (2/3)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:
$1 \leq x_{i}-x_{j} \leq 2,2 \leq x_{i}-x_{j} \leq 4$.
■ $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:
$y-x_{i}=2 n-2,2 n \leq y-x_{j} \leq 4 n$.
■ For large enough n (in O (\#variables) $), 2 n+2 \approx \infty$ in STP.

W[1]-hard Cases (2/3)

Lemma

If \mathcal{A} contains $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}>0$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \leq x_{i}-x_{j} \leq 2$?
- We can express $x_{i}-x_{j}=2$:
$1 \leq x_{i}-x_{j} \leq 2,2 \leq x_{i}-x_{j} \leq 4$.
■ $1 \leq x_{i}-x_{j} \leq 2$ implements $2 \leq x_{i}-x_{j} \leq 2 n+2 \forall n \in \mathbb{N}$:
$y-x_{i}=2 n-2,2 n \leq y-x_{j} \leq 4 n$.
- For large enough n (in O (\#variables) $), 2 n+2 \approx \infty$ in STP.
- $1 \leq x_{i}-x_{j} \leq 2$ expresses $x_{i}-x_{j} \leq 2$ and $x_{i}-x_{j} \geq 2$.

W[1]-hard Cases (3/3)

Lemma

If \mathcal{A} contains
(a) $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}_{>0}$, or
(b) $a \leq x_{i}-x_{j} \leq b$ for some $0<a<b<\infty$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

Finally, we prove that if \mathcal{A} is not trivial, one-sided, or equation, then it either implements two constraints from (a) or the constraint from (b).

W[1]-hard Cases (3/3)

Lemma

If \mathcal{A} contains
(a) $x_{i}-x_{j} \leq a$ and $x_{i}-x_{j} \geq b$ for any $a, b \in \mathbb{Q}_{>0}$, or
(b) $a \leq x_{i}-x_{j} \leq b$ for some $0<a<b<\infty$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

Finally, we prove that if \mathcal{A} is not trivial, one-sided, or equation, then it either implements two constraints from (a) or the constraint from (b).

Questions for Future

- What if we allow unary constraints, e.g. $1 \leq x_{i} \leq 3$?
- What if we allow strict constraints, e.g. $1<x_{i}-x_{j} \leq 2$?

■ For which other problems X is Almost X interesting?

- Almost STP assumes that the additive error is small. What about the multiplicative error? Can we check if $(1-\epsilon)$ fraction of STP constraints are consistent? This question is asking about robust approximation.

Thank you!

