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The constraint satisfaction problem (CSP) has important applications in computer science 
and AI. In particular, infinite-domain CSPs have been intensively used in subareas of 
AI such as spatio-temporal reasoning. Since constraint satisfaction is a computationally 
hard problem, much work has been devoted to identifying restricted problems that are 
efficiently solvable. One way of doing this is to restrict the interactions of variables and 
constraints, and a highly successful approach is to bound the treewidth of the underlying 
primal graph. Bodirsky & Dalmau (2013) [14] and Huang et al. (2013) [47] proved that 
CSP(�) can be solved in n f (w) time (where n is the size of the instance, w is the treewidth 
of the primal graph and f is a computable function) for certain classes of constraint 
languages �. We improve this bound to f (w) · nO (1) , where the function f only depends 
on the language �, for CSPs whose basic relations have the patchwork property. Hence, 
such problems are fixed-parameter tractable and our algorithm is asymptotically faster 
than the previous ones. Additionally, our approach is not restricted to binary constraints, 
so it is applicable to a strictly larger class of problems than that of Huang et al. However, 
there exist natural problems that are covered by Bodirsky & Dalmau’s algorithm but not 
by ours, and we begin investigating ways of generalising our results to larger families of 
languages. We also analyse our algorithm with respect to its running time and show that 
it is optimal (under the Exponential Time Hypothesis) for certain languages such as Allen’s 
Interval Algebra.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The constraint satisfaction problem over a constraint language � (CSP(�)) is the problem of finding a variable assignment 
which satisfies a set of constraints, where each constraint is constructed from a relation in �. This problem can be used 
to model many problems encountered in computer science and AI, see e.g. Rossi et al. [73] or Dechter [30]. The CSP is 
computationally hard in the general case; if the variable domains are finite, then the problem is NP-complete, and otherwise 
it may be of arbitrarily high complexity [15]. Hence, identifying tractable problems is of great practical interest.

Tractable fragments have historically been identified using two different methods: either (1) restrict the relations that 
are allowed in the constraint language or (2) restrict how variables and constraints interact in problem instances. We focus 
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on the second kind of restrictions in this article; these are often referred to as structural restrictions. One common way of 
studying structural restrictions is via the primal graph: this graph has the variables as its vertices with two of them joined 
by an edge if they occur together in the scope of a constraint. The graph parameter treewidth [11,72] has proven to be 
very useful in this context, since many NP-hard graph problems are tractable on instances with bounded treewidth. The 
treewidth of the primal graph has been extensively used in the study of finite-domain CSPs. It is known that the problem 
is fixed-parameter tractable (fpt), i.e. it can be solved in f (w + d) · nO (1) time, where n is the size of the instance, w is the 
treewidth of the primal graph, d is the domain size and f is some computable function. This was proven by Gottlob et 
al. [40]; see also Samer & Szeider [74] for a more general treatment.

Let us now consider infinite-domain CSPs. For certain classes of constraint languages, Bodirsky & Dalmau [14, Corol-
lary 1] proved that CSP(�) can be solved in nO (w) time (where the exact expression in the O (w) term may depend on the 
constraint language), while Huang et al. [47, Theorem 6] obtained the bound O (w3n · ew2 logn) = nO (w2) . These results prove 
the weaker property of membership in the complexity class XP. Algorithms with a running time bounded by n f (w) are ob-
viously polynomial-time when w is fixed. However, since w appears in the exponent, such algorithms become impractical 
(even for small w) when large instances are considered. It is significantly better if a problem is fpt and can be solved in 
time f (w) · nO (1) , since the order of the polynomial in n does not depend at all on w .

Our main result is an fpt algorithm for CSPs over infinite domains where the underlying basic relations have the patch-
work property [59], parameterized by treewidth. Several important CSPs (such as RCC8 and Allen’s Interval Algebra [19,59]) 
are known to have this property. The patchwork property ensures that the union of two satisfiable instances of the CSP, 
whose constraints agree on their common variables, is also satisfiable. With the above discussion in mind, it is clear that 
our algorithm has better computational properties than the two previous ones. We will now briefly compare the applicabil-
ity of the algorithms; more about this can be found in Section 7. Bodirsky & Dalmau’s algorithm (BD) works for constraint 
languages that are ω-categorical (in fact, it even works for languages where only the core is ω-categorical), while Huang, 
Li & Renz’s algorithm (HLR) works for languages with binary relations that have the atomic network amalgamation property
(aNAP). Our algorithm has a wider applicability than HLR, since aNAP implies the patchwork property and our algorithm is 
not restricted to binary relations. We note that it does not seem difficult to extend the HLR algorithm so that it works for 
non-binary relations; such an extension would lead to an XP algorithm and our proposed algorithm remains faster.

The relation to BD is more complex, since there are problems that are covered by BD but not by our algorithm. We note 
that in some cases our algorithm is not applicable to a CSP directly, but one can find an equivalent problem that has the 
patchwork property via homogenisation — one example is the Branching Time Algebra [4] — the details are discussed later on. 
However, there are cases where homogenisation is not applicable, so the exact dividing line is unfortunately unclear.

Note that somewhat surprisingly the situation for finite-domain CSPs in the context of primal treewidth is rather similar 
to the situation for infinite CSPs having the patchwork property. That is, finite-domain CSPs are fixed-parameter tractable 
parameterized by primal treewidth plus domain size, but known to be W[1]-hard and in XP parameterized by primal 
treewidth alone [61]. Therefore, if one fixes a particular finite constraint language, finite-domain CSPs are fixed-parameter 
tractable parameterized by primal treewidth alone because the domain size is bounded for every finite constraint language.

In Section 2, we introduce some necessary preliminaries. The remainder of this article is divided into three distinct 
parts. In the first part (Sections 3 and 4), we present our main algorithm and prove that it achieves the required time 
bound. Our algorithm is based on dynamic programming and it is quite different from the BD algorithm since BD is based 
on a transformation to Datalog. The connection with HLR is more subtle: HLR is a recursive algorithm based on ideas by 
Darwiche [28], which like our algorithm, uses concrete tree decompositions. The important difference can be seen in the 
time complexity, where HLR is an XP algorithm and ours is fixed-parameter tractable. We complement our algorithmic 
results with tight lower bounds based on the Exponential Time Hypothesis: these show that the existence of significantly 
faster algorithms is not possible in certain special cases such as Allen’s Interval Algebra.

In the second part (Section 5), we analyse the applicability of our algorithm. Even though the patchwork property 
is well known within the CSP community, there are not many formalisms that have been proven to have this property. 
By using certain model-theoretical concepts, we obtain an alternative way of identifying constraint languages with the 
patchwork property. Based on this, we demonstrate how to apply our results on constraint languages that are definable in 
(Q; <) (with applications in, for instance, temporal reasoning and scheduling) and phylogeny languages (which are useful 
in bioinformatics). These classes of languages give rise to CSPs with non-binary relations. Such relations have, unfortunately, 
not been well studied in AI, since the focus has almost exclusively been on binary relations. The phylogeny languages are 
particularly interesting in this respect, since the basic relations themselves are non-binary.

In the third part (Section 6), we study how our fpt result can be generalised to languages that do not have the patchwork 
property. One concrete example of an interesting language without the patchwork property is the previously mentioned 
Branching Time Algebra. We use model-theoretic tools to achieve one possible generalisation: we show that homogenisation
can be used to extend our fpt result to certain classes of languages that do not have the patchwork property, and this 
extended result covers the so-called Branching Time Algebra [4].

A preliminary version of this article appeared as a conference paper in the Proceedings of the 35th AAAI Conference on 
Artificial Intelligence (AAAI-2021). The present version is significantly expanded and the major differences are as follows: 
(1) properties that make the algorithm applicable have been crystallised in a more abstract way, allowing us to solve a 
wider class of problems, namely those CSPs where the relations have different arities and, under certain conditions, CSPs 
with infinite constraint languages, (2) a fine-grained analysis of the running time has been conducted, allowing us to prove 
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optimality of our algorithms (under the Exponential Time Hypothesis) for several interesting cases, and (3) a study of 
applicability of our approach to infinite-domains CSPs without the patchwork property has been initiated.

2. Preliminaries

In this section we introduce the necessary prerequisites.

2.1. Relational structures

A (relational) signature τ is a set of symbols, each with an associated natural number called their arity. A (relational) 
τ -structure A consists of a set D (the domain), together with relations RA ⊆ Dk for each k-ary symbol R ∈ τ . A structure 
is countable if its domain is a countable set. To avoid overly complex notation, we sometimes do not distinguish between 
the symbol R for a relation and the relation RA itself. We also allow ourselves to view relational structures as sets and, for 
instance, write expressions like R ∈ A.

Let A be a τ -structure over a domain D . We say that A is k-ary if every relation in A has arity k. Define A=k = ⋃{R ∈
A | R has arity k}, i.e. A=k is the union of all k-ary relations in A.

The relations in A are jointly exhaustive (JE) if for all k ≥ 2, A=k is either empty or equal to Dk . They are pairwise disjoint
(PD) if R ∩ R ′ = ∅ for all distinct R, R ′ ∈ A. In other words, the relations are JEPD if the nonempty subsets A=k partition Dk .

The following concept is also used in the literature: the relations of A are JE+ if there is a natural number d ≥ 2 such 
that A=k = Dk for all k ∈ {2, . . . , d}, and A=k is empty otherwise. Note that any set of JE relations can be augmented with 
the total relations Dk for all k ∈ {2, . . . , d} where A=k is empty, thus making the (trivially) extended structure JE+ . Also 
note that every JE+ structure is also JE, and that a k-ary structure cannot be JE+ unless k = 2. The difference between JE 
and JE+ reflects different traditions within the CSP community. Some researchers have concentrated on k-ary structures and 
for them the JE property is natural. Others have concentrated on structures with mixed arities and then the JE+ property 
becomes natural.

Denote the equality relation over the domain D by Eq2 = {(d, d) | d ∈ D}. The relations of A are jointly diagonalizable (JD) 
if 

⋃{R ∈ A | R ⊆ Eq2} = Eq2. Note that JD holds vacuously if the equality relation is included in A, and that a k-ary structure 
can only be JD if k = 2.

2.2. Logic

Let A be a τ -structure. First-order formulas φ over A (or, for short, A-formulas) are defined using the logical symbols of 
universal and existential quantification, disjunction, conjunction, negation, equality, bracketing, variable symbols, the relation 
symbols from τ , and the symbol ⊥ for the truth-value false. First-order formulas over A can be used to define relations: for 
a formula φ(x1, . . . , xk) with free variables x1, . . . , xk , the corresponding relation R is the set of all k-tuples (t1, . . . , tk) ∈ Dk

such that φ(t1, . . . , tk) is true in A. In this case we say that R is first-order definable in A. Our definitions of relations are 
always parameter-free, i.e. we do not allow the use of domain elements within them, and they are always quantifier-free. 
We may thus assume (without loss of generality) that all formulas defining relations are in disjunctive normal form (DNF). 
A formula is in DNF if it is a disjunction of one or more conjunctions of one or more atomic formulas of the type R(x̄)
or ¬R(x̄), where R ∈ A ∪ {=} and x̄ is a sequence of variables. The conjunctions of atomic formulas are referred to as terms.

The most common way of using JEPD relations in AI-relevant CSPs is via the constraint language A∨= , where A is a k-ary 
structure. For every subset S of relations in A, A∨= contains the relation that is the union of the relations in S . The set A∨=
contains the unions of all subsets of A. Equivalently, R ∈ A∨= if R can be written as a disjunction R1(x̄) ∨ · · · ∨ R p(x̄) where 
R1, . . . , R p ∈ A and x̄ = (x1, . . . , xk). This definition demands that all relations in A have the same arity. Since we want to 
study sets of relations that are more expressive than A∨= , we let 〈A〉b denote the set of relations that are definable by 
quantifier-free formulas that only contain the relations in A, i.e. one is not allowed to use the equality relation = unless it 
is a member of A. The members of 〈A〉b are sometimes referred to as Boolean combinations of the relations in A. When the 
relations in A are k-ary for some k, A∨= � 〈A〉b in general. Let us consider a concrete example. Let R and S denote 3-ary 
relations. The relation T1(x, y, z) defined by R(x, y, z) ∨ S(x, y, z) is a member of both {R, S}∨= and 〈{R, S}〉b. The relation 
T2(x, y, z) defined by R(x, y, z) ∨ R(y, z, x) is a member of 〈{R, S}〉b, but it is not a member of {R, S}∨= .

Note that if a set of k-ary relations A is finite and JEPD, then we may assume that first-order formulas are negation-free: 
any negated relation can be replaced by the disjunction of all other relations: ¬R(x̄) ≡ ∨

S∈A\{R} S(x̄).

2.3. Constraint satisfaction

Let A be a τ -structure with domain D . The Constraint Satisfaction Problem over A (CSP(A)) is defined as follows:

Instance: A set V of variables and a set C of constraints of the form R(v1, . . . , vk), where R ∈ A is a relation of arity k and 
v1, . . . , vk ∈ V .
Question: Is there an assignment f : V → D such that ( f (v1), . . . , f (vk)) ∈ R for every R(v1, . . . , vk) ∈ C?

We say that a CSP(A) instance (V , C) is satisfiable if it is a yes-instance of CSP(A), and we say that the function f : V → D
(that witnesses the satisfiability of (V , C)) is a solution. The structure A is often referred to as the constraint language. We 
3
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say that a constraint language A is finite if it contains a finite number of relations. Let A be a finite constraint language with 
JEPD relations. Consider a finite � ⊆ 〈A〉b and let I = (V , C) be an instance of CSP(�). Recall that every relation used in 
a constraint in C can be defined by a DNF A-formula that involves only positive atomic formulas of the form R(x̄), where 
R ∈ A. A certificate for I is a satisfiable instance C = (V , C ′) of CSP(A) that implies every constraint in C , i.e. for every 
R(v1, . . . , vk) in C , there is a term in the definition of this constraint (as a DNF A-formula) such that all constraints in this 
term are in C ′ .

Proposition 1. An instance of CSP(�) admits a certificate if and only if it is satisfiable.

Now assume CSP(A) is decidable. Then, there is an algorithm deciding whether an instance (V , C ′) of CSP(A) is a certifi-
cate for an instance (V , C) of CSP(�): first, check that (V , C ′) is satisfiable, and then, for all R(v1, . . . , vk) ∈ C , verify that 
(V , C ′) implies R(v1, . . . , vk) by considering every term in the definition of R and checking if it is included in C ′ . Note that 
the length of the DNF formula defining R depends only on the arity of R and |A|, which are both bounded by constants 
since � and A are finite languages. Thus, if CSP(A) is solvable in polynomial time, then the certificate test can also be 
performed in polynomial time.

An instance of CSP(A) is complete if it contains a constraint over every k-tuple of (not necessarily distinct) variables for 
every k such that there is a relation in A of arity k. A certificate is complete if it is a complete instance of CSP(A). Since 
the relations in A are JE, any certificate can be extended to a complete one. Thus, we can assume that all certificates are 
complete.

Example 2. Consider the structure Q = (Q; <, >, =), i.e. the rationals under the natural ordering. The relation B =
{(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x} is known as the betweenness relation and it is a member of 〈Q〉b. Let I =
({w, x, y, z} | {B(w, x, y), B(x, y, z)}) be an instance of CSP({B}). The instance I is satisfiable and this is witnessed by the 
solution f (w) = 0, f (x) = 1, f (y) = 2, f (z) = 3. A certificate for this instance is {w < x, x < y, y < z}. A complete certificate 
is

w = w, w < x, w < y, w < z,
x > w, x = x, x < y, x < z,
y > w, y > x, y = y, y < z,
z > w, z > x, z > y, z = z.

For any instance I = (V , C) of CSP and any set of variables U ⊆ V , define C[U ] ⊆ C to include all constraints whose 
scope is in U . We say that I[U ] = (U , C[U ]) is the subinstance of I induced by U . We will also say that I[U ] is obtained 
by projecting I onto U . Properties of certificates (including completeness) are preserved under projections. We formalise this 
observation below.

Proposition 3. If C is a certificate for I = (V , C), then C[U ] is a certificate for I[U ] for all U ⊆ V . If C is complete, then C[U ] is also 
complete.

2.4. Parameterized complexity

In parameterized algorithmics [33,37,66] the runtime of an algorithm is studied with respect to the input size n and a 
parameter p ∈N . The basic idea is to find a parameter that describes the structure of the instance such that the combinato-
rial explosion can be confined to this parameter. In this respect, the most favourable complexity class is FPT (fixed-parameter 
tractable), which contains all problems that can be decided by an algorithm running in f (p) · nO (1) time, where f is a com-
putable function. Problems that can be solved in this time are said to be fixed-parameter tractable (fpt). The more general 
class XP contains all problems decidable in n f (p) time, i.e. the problems solvable in polynomial time when the parameter p
is bounded. Clearly, FPT ⊆ XP. Moreover, the inclusion is strict (see e.g. [37]).

We will concentrate on one well-known parameter in this article: the treewidth of the primal graph. Thus, if we state that 
some problem is fpt, then we always mean with respect to this parameter. The primal graph of an instance of a CSP is the 
undirected graph whose vertices coincide with the variables of the instance, and where two vertices are joined by an edge 
if they occur in the scope of the same constraint. Treewidth is based on tree decompositions: a tree decomposition (T , X) of 
an undirected graph G = (V , E) consists of a rooted tree T and a mapping X from the nodes of T to the subsets of V . The 
subsets X(t) are called bags. Tt stands for the subtree rooted at t , while Vt is the set of all variables occurring in the bags 
of Tt , i.e. Vt = ⋃

s∈V (Tt )
X(s). A tree decomposition fulfils the following properties:

1.
⋃

t∈V (T ) X(t) = V .
2. If (u, v) ∈ E , then u, v ∈ X(t) for some t ∈ V (T ).
3. For any t1, t2, t3 ∈ T , if t2 lies on the path between t1 and t3, then X(t1) ∩ X(t3) ⊆ X(t2).
4
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Fig. 1. A graph (left) and an optimal tree decomposition of the graph (right).

Fig. 2. Illustration of the relations of RCC8 with two-dimensional disks.

The width of a tree decomposition T is defined as max{|X(t)| : t ∈ V (T )} −1. The treewidth of a graph G is the minimum 
width among all tree decomposition of G . See also Fig. 1 for an example of an optimal tree decomposition of a graph. It is 
NP-complete to determine whether a graph has treewidth at most k [6], but when k is fixed the graphs with treewidth k
can be recognised and corresponding tree decompositions can be constructed in linear time [20].

2.5. Qualitative spatial and temporal reasoning

We will consider several well-known formalisms for qualitative spatial and temporal reasoning. All of them can be 
defined as B∨= via a binary constraint language B with JEPD relations. We begin with a well-known spatial formalism. The 
region connection calculus (RCC8) [70] is a formalism for qualitative spatial reasoning, where the basic objects (referred to 
as regions) are non-empty regular closed subsets of a connected regular topological space. The regions do not have to be 
internally connected, that is, they may consist of different disconnected pieces. BRCC8 contains eight relations: EQ (equal),
PO (partial overlap), DC (disconnected), EC (externally connected), NTPP (non-tangential proper part), its converse NTPP−1,
TPP (tangential proper part) and its converse TPP−1. See Fig. 2 for examples. RCC5 is a variant of RCC8 where one is not 
able to distinguish regions from their topological closure, i.e. the distinction between boundary points and interior points 
is ignored. The disconnectedness relations DC and EC are replaced by DR = DC ∪ EC (distinct from), the tangential and 
non-tangential proper part relations TPP and NTPP are replaced by PP = TPP ∪ NTPP (proper part), and PP−1 is defined 
analogously.

It is important to note that the exact choice of relations for representing a reasoning problem as a CSP may be crucial, 
and we will return to this issue in Sections 5 and 6. The importance of choosing the right representation can be illustrated 
even with simple formalisms such as RCC5 and RCC8. RCC8 can be represented with structures A and B such that CSP(A) is 
the same computational problem as CSP(B), while A and B are very different from a model-theoretical point of view. Such 
differences may be important when, for instance, constructing algorithms: the model-theoretical properties may simplify 
the algorithm construction process considerably. A concrete example is Bodirsky and Wölfl’s [19] XP algorithm for RCC8 
parameterized by treewidth of the primal graph. By choosing the right representation of RCC8, they could directly utilise 
the algorithmic framework of Bodirsky and Dalmau [14] and thus avoid unnecessary work. Another issue is based on the 
fact that there are structures A and B that look like suitable representations of RCC5 or RCC8 (for instance, by having the 
“right” composition tables), but have different CSPs. This may be highly confusing when modelling various problems, and 
different representations may obviously lead to problems having different computational complexity. Bodirsky and Jonsson 
discuss issues like these in the context of RCC5 [16, Section 2.5.2] with the aid of fairly natural structures having domains 
such as the non-empty subsets of the integers and the non-empty open disks in R2.

For RCC5 and RCC8, we will thus exclusively use the representations suggested by Bodirsky & Wölfl [19], whose CSP 
coincides with the standard interpretation of RCC relations. The representation is based on Fraïssé’s theorem [38] applied to 
RCC8 instances and it is (unfortunately) not easy to visualize.

The choice of representation for the temporal formalisms we present below is, fortunately, much easier: the natural 
representations via concrete objects in Qd have proven to capture the intended computational problems and at the same 
time have advantageous model-theoretical properties. We will consequently use these representations throughout the article.
5
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Table 1
The thirteen basic relations in Allen’s Interval Algebra. The end-
point relations I− < I+ and J− < J+ that are valid for all inter-
vals I and J are omitted.

Basic relation Example Endpoints

I precedes J p iii I+ < J−
J preceded-by I pi jjj

I meets J m iiii I+ = J−
J met-by I mi jjjj

I overlaps J o iiii I− < J− < I+ < J+
J overlapped-by I oi jjjj

I during J d iii I− > J− ,

J includes I di jjjjjjj I+ < J+

I starts J s iii I− = J− ,

J started-by I si jjjjjjj I+ < J+

I finishes J f iii I+ = J+ ,

J finished-by I fi jjjjjjj I− > J−

I equals J e iiii I− = J− ,
jjjj I+ = J+

1. Allen’s Interval Algebra (IA) [3] is a temporal reasoning formalism where one considers relations between intervals of the 
form I = [I−, I+], where I−, I+ ∈ Q, I− < I+ are the start and end points, respectively. The language BIA consists of 
thirteen basic relations illustrated in Table 1.

2. The d-dimensional Block Algebra (BAd) [9] is a generalisation of IA to d-dimensional boxes with sides parallel to the 
coordinate axes. The relations in BBA are d-tuples of IA relations, each one applied in the corresponding dimension.

3. The Cardinal Direction Calculus (CDC) [57] is a formalism for spatial reasoning with points on the plane as the basic 
objects. The relations in BCDC correspond to eight cardinal directions (North, East, South, West and four intermediate 
ones) plus the equality relation. They can be viewed as pairs (R1, R2) for all choices of R1, R2 ∈ {<, =, >}, where each 
relation applies to the corresponding coordinate. See Table 2 for the correspondence between cardinal directions and 
pairs (R1, R2).

Table 2
The basic relations of Cardinal Direction Calculus.

= N E S W NE SE SW NW
(=,=) (=,>) (>,=) (=,<) (<,=) (>,>) (>,<) (<,<) (<,>)

3. The main algorithm

The goal of this section is to present an fpt algorithm that is applicable to a wide range of interesting CSPs. This section 
is divided into four parts: we describe the patchwork property and the algorithm in the first two parts, analyse concrete 
time bounds in the third part, and discuss infinite constraint languages in the fourth part.

3.1. The patchwork property

The basic CSP property underlying our algorithm is the following.

Definition 4 (Lutz and Miličić [59]). A JEPD constraint language A has the patchwork property (PP) if, for every pair of complete 
satisfiable instances I1 = (V 1, C1) and I2 = (V 2, C2) of CSP(A) such that I1[V 1 ∩ V 2] = I2[V 1 ∩ V 2], the instance (V 1 ∪ V 2,

C1 ∪ C2) is also satisfiable.

We want to underline the importance of the completeness condition in the previous definition: for example, consider the 
JEPD constraint language (<, =, >) with domain Q and the two satisfiable incomplete instances ({a, x, b}, {a < x, x < b}) and 
({a, y, b}, {a > y, y > b}). The intersection of these instances contains no constraints, so it is trivially satisfiable. However, 
their union is not satisfiable since the constraints imply that a < b and a > b hold simultaneously.

Several prominent formalisms for qualitative spatial and temporal reasoning in AI are known to have the patchwork 
property. For example, the JEPD basic relations of Allen’s Interval Algebra, the Block Algebra, and the Cardinal Direction 
Calculus have the patchwork property [46,59], assuming that the standard representations from Section 2.5 are used. The 
picture is slightly more complex for RCC8 and RCC5. Lutz and Miličić [59] show that RCC8 restricted to the real plane has 
the patchwork property, and Huang [46] points out that this result can be lifted to the multi-dimensional case via Bodirsky 
6
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Fig. 3. A tree decomposition (left) and a corresponding nice tree decomposition (right).

& Wölfl’s [19] representation. Baader & Rydval [8] also point this out in a more general setting and we will come back to 
their results in Section 5. We refer the reader who is interested in general model-theoretical properties of spatial reasoning 
formalisms to the papers by Düntsch and Li [34,35].

The following lemma (concerning complete certificates) is a direct consequence of the patchwork property.

Lemma 5. Let A be a finite set of JEPD relations with the patchwork property and assume that � ⊆ 〈A〉b is finite. For any two satisfiable 
instances I1 = (V 1, C1) and I2 = (V 2, C2) of CSP(�) admitting complete certificates C1 and C2 such that C1[V 1 ∩ V 2] = C2[V 1 ∩ V 2], 
the instance (V 1 ∪ V 2, C1 ∪ C2) is also satisfiable.

Proof. Let C1 = (V 1, C ′
1), C2 = (V 2, C ′

2), and define the instance C∪ = (V 1 ∪ V 2, C ′
1 ∪ C ′

2) of CSP(A). We claim that C∪ is a 
certificate for (V 1 ∪ V 2, C1 ∪ C2). First, we note that C∪ is satisfiable by Definition 4. Now consider a constraint c ∈ C1 ∪ C2. 
Then c is in one of the following sets: C1 \ C2, C1 \ C2 or C1 ∩ C2. In the first case, C∪[V 1] = C1 implies c. Similarly, in 
the second case C∪[V 2] = C2 implies c. Finally, if c is in the intersection of C1 and C2, then C∪[V 1 ∩ V 2] = C1[V 1 ∩ V 2] =
C2[V 1 ∩ V 2] implies c. Thus, C∪ implies (V 1 ∪ V 2, C1 ∪ C2). �
3.2. Algorithm

To simplify the presentation of our algorithm, we will use a particular kind of tree decomposition. A tree decomposition 
is nice (see also Fig. 3 for an illustration of a nice tree decomposition) if it fulfils the following properties:

• X(r) =∅ and X(�) = ∅ for the root r and all leaf nodes � in T .
• Every non-leaf node in T is one of the following types:

– An introduce node: a node t with exactly one child t′ such that X(t) = X(t′) ∪ {v} for some v ∈ V \ X(t′).
– A forget node: a node t with exactly one child t′ such that X(t) = X(t′) \ {w} for some w ∈ V ∩ X(t′).
– A join node: a node t with exactly two children t1 and t2 such that X(t) = X(t1) = X(t2).

Given a tree decomposition T of width ω of an n-vertex graph, one can construct a nice tree decomposition of the same 
width and with O (ωn) nodes in linear time [21]. Note that nice tree decompositions are merely a structured type of tree 
decomposition and their only purpose is to simplify the presentation of dynamic programming algorithms using treewidth.

We are now ready to present the fpt algorithm.

Theorem 6. Let A be a finite constraint language with JEPD relations and the patchwork property. Assume CSP(A) is decidable. For any 
finite constraint language � ⊆ 〈A〉b , CSP(�) is fpt parameterized by the treewidth of the primal graph.

Proof. Let I = (V , C) be an instance of CSP(�) and assume (T , X) is a nice tree decomposition of its primal graph. The 
algorithm works as follows: for every node t ∈ T , we compute the set R(t) consisting of all certificates for I[Vt] projected 
onto X(t). Clearly, I is satisfiable if and only if R(r) �= ∅, where r is the root of T . We compute R(t) using dynamic 
programming from the leaves upwards, i.e. a node is processed only if all its children have already been processed.
7
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To start, we set R(�) = {(∅, ∅)} for all leaf nodes � ∈ T . Since the decomposition is nice, we only need to consider three 
cases.

1. If t is an introduce node with a child t′ , we enumerate certificates C for I[X(t)] and add C to R(t) if C[X(t′)] is in R(t′).
2. If t forgets a variable w and has a child t′ , then R(t) is obtained by enumerating certificates in R(t′) and removing w

together with all constraints involving it from the certificate.
3. Finally, if t joins nodes t1 and t2, then set R(t) = R(t1) ∩ R(t2) (recall that we may assume the certificates C that we 

consider are complete).

This completes description of the algorithm. To show correctness, we prove the following claim for every t ∈ T .

Claim 6.1. C is a certificate for I[Vt] if and only if C[X(t)] ∈ R(t).

We prove the claim by induction. In the base case, R(�) = {(∅, ∅)} is indeed the set of all certificates for I[V�] for all 
leaves � in T , since V� = X(�) =∅.

If t is an introduce node with child t′ , consider a certificate C for I[Vt]. Note that C[Vt′ ] is a certificate for I[Vt′ ], so 
I[X(t′)] ∈ R(t′) by the inductive hypothesis. Furthermore, C[X(t)] is a certificate for I[X(t)], thus the algorithm adds it 
to R(t). In the opposite direction, consider K ∈ R(t) and observe that, by construction, there is a certificate C′ for I[Vt′ ]
such that K[X(t′)] = C′[X(t′)]. Since K is a certificate for X(t) and X(t) ∩ Vt′ = X(t′), the union of K and C′ is a certificate 
for I[Vt] by the patchwork property, and K is precisely its projection onto X(t).

If t is a forget node with a child t′ , consider a certificate C for I[Vt′ ] and note that, since Vt = Vt′ , it is also a certificate 
for I[Vt]. By the inductive hypothesis, C[X(t′)] ∈ R(t′), hence, the algorithm adds C[X(t)] to R(t). In the opposite direction, 
consider K[X(t)] ∈ R(t) derived from K ∈ R(t′) and note that the inductive hypothesis implies that K and, subsequently, 
K[X(t)] are projections of a certificate for I[Vt ].

If t joins nodes t1 and t2, consider a certificate C for I[Vt]. Note that it is also a certificate for I[Vt1 ] and I[Vt2 ], since 
Vt1 , Vt2 ⊆ Vt . By the inductive hypothesis, C[X(t1)] = C[X(t2)] = C[X(t)] ∈ R(t1) ∩ R(t2) and the algorithm adds it to R(t). 
In the opposite direction, consider K ∈ R(t) = R(t1) ∩ R(t2). By the inductive hypothesis, there are certificates C1 for I[Vt1 ]
and C2 for I[Vt2 ] such that C1[X(t)] = C2[X(t)] = K. By the third property of tree decompositions, Vt1 ∩ Vt2 ⊆ X(t), thus 
the union of C1 and C2 is a certificate for I[Vt] by Lemma 5, and K is precisely its projection onto X(t).

We continue with the time complexity of the algorithm. Let w denote the width of the decomposition (T , X), let k
denote the maximum arity of relations in A, and assume that τ (m) is the time required to enumerate certificates for an 
instance of CSP(�) with m variables. Note that since A and � are finite, the function τ depends only on the number of 
variables. Furthermore, τ (m) is an upper bound on the number of complete satisfiable instances of CSP(A) with m variables.

Claim 6.2. For every t ∈ T , the computation of R(t) requires at most τ (w + 1)2 · w O (k) time.

First, note that any certificate with n variables contains at most 
∑k

i=1 ni ≤ knk constraints. Furthermore, τ (|X(t)|) is an 
upper bound on |R(t)|. Finally, taking a projection of a certificate onto U ⊆ V requires |U |O (k) time. If t is an introduce 
node, the computation of R(t) requires at most

τ (w + 1)|R(t′)| · |X(t′)|O (k) ≤ τ (w + 1)2 · w O (k)

time, i.e. τ (w + 1) time to enumerate all potential certificates of I[X(t)], |X(t′)|O (k) time to compute the projection of any 
such certificate onto X(t′), and |R(t′)| time to check whether this projection is in R(t′). If t is a forget node, the computation 
requires at most

|R(t′)| · |X(t)|O (k) ≤ τ (w + 1) · w O (k)

time, i.e. |X(t)|O (k) time to compute the projection of every certificate in R(t′) onto X(t). Finally, if t joins nodes t1 and t2, 
the computation of R(t) takes at most

|R(t1)||R(t2)| · O (k|X(t)|k) ≤ τ (w + 1)2 · w O (k)

time, where w O (k) accounts for the time required to compare two certificates.
There are O (ωn) nodes in the tree T , so the algorithm solves CSP(�) in τ (w + 1)2 · w O (k) · O (ωn) ∈ τ (w + 1)2 · w O (k) · n

time. The τ (w + 1)2 · w O (k) term depends only on the parameter w , hence CSP(�) is fpt. �
3.3. Concrete time bounds

We continue by taking a closer look at some classical CSPs for qualitative spatial and temporal reasoning.
8
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Corollary 7. CSP(B∨=) is solvable in

1. 2O (w2) · O (n) time if B is BRCC5 or BRCC8 ,
2. 2O (w log w) · O (n) time if B is BIA , BBAd or BCDC .

Proof. Consider Claim 6.2 in Theorem 6. Since the languages under consideration are JEPD and binary, the total number of 
instances of CSP(B) with w variables is |B|w2 = 2O (w2) , since |B| is constant. Solving instances of CSP(BRCC8) and CSP(BRCC5)

takes polynomial time [71], so τ (w) = 2O (w2) . This yields the result for RCC5 and RCC8.
For the remaining cases, we need a tighter bound on τ (w). We show that the number of complete certificates for these 

problems is at most 2O (w log w) . Observe that an ordered partition of a set S of size n is a surjective function π : S →
{1, . . . , r} for some r ∈ {1, . . . , n}. Any two elements of S can be compared with the usual relations {<, =, >} according to 
the values assigned to them by π . Observe that there are at most nn = 2O (n logn) ordered partitions of S .

Every complete satisfiable instance of CSP(BIA) corresponds to a unique ordered partition of the endpoints of the inter-
vals (see e.g. [77]); this is because a complete instance provides a relation between every pair of distinct intervals, which 
in turn provides an ordering of the corresponding endpoints of the intervals. For an instance with w variables (i.e. 2w
endpoints), there are at most 2O (w log w) such partitions. Thus, an instance of CSP(B∨=

IA ) with w variables admits at most 
2O (w log w) complete certificates. Given an ordered partition on the endpoints of the intervals, there is a polynomial-time 
procedure that recovers the corresponding complete satisfiable instance of CSP(BIA), if one exists: for every variable, check 
that its left endpoint precedes its right endpoint – if not, then there is no corresponding instance; otherwise, deduce the 
relation between every pair of variables according to the ordered partition of their endpoints. The last step works since BIA
is JEPD. Finally, observe that generating all (unordered) partitions of a set takes O (1) amortised time per partition [48] and 
generating all permutations takes O (1) time per permutation [75]. Thus, τ (w) = 2O (w log w) for CSP(B∨=

IA ).
The Block Algebra BAd can be viewed as an extension of Allen’s Interval Algebra to d dimensions, and the complete 

certificates correspond to d ordered partitions of the endpoints. We have ((2w)2w )d = 2O (w log w) since d is fixed, so τ (w) =
2O (w log w) for CSP(B∨=

BAd
).

Every satisfiable instance of the CSP(BCDC) corresponds to two ordered partitions – one for the x coordinates and one for 
the y coordinates. There are (w w)2 = 2O (w log w) such pairs of partitions, so τ (w) = 2O (w log w) for CSP(B∨=

CDC). �
We want to make a few remarks at this point. First of all, the proof of Corollary 7 also shows that CSP(�) for any finite 

� ∈ 〈B〉b is solvable in 2O (w2) · O (n) time if B is BRCC5 or BRCC8, and in 2O (w log w) · O (n) time if B is BIA, BBAd or BCDC. 
Another important observation is that CSP(BRCC5) and CSP(BRCC8) are known to be solvable in 2O (n logn) time [51], but this 
result does not carry over to certificate enumeration and it is thus not sufficient for improving the 2O (w2) · O (n) bound for 
CSP(BRCC5) and CSP(BRCC8).

Observation 8. There are 2�(w2) complete satisfiable instances of CSP(BRCC5) with w variables.

Proof. First, note that there are |BRCC5|(w
2) = 2O (w2) not necessarily satisfiable instances of CSP(BRCC5) with w variables. 

Now, consider complete instances (V , C) of this problem with V = {v1, . . . , v w}, where the constraints over each pair of 
variables are either DR or PO, chosen arbitrarily. We claim that every such instance is satisfiable, and since there are 
2(w

2) = 2O (w2) of them, this yields the result.
Recall that in RCC5, the domain consists of all subsets of a topological space. Note that the subsets need not be internally 

connected. We refer to internally connected subsets as regions. To prove the claim, we construct an assignment f that 
assigns a subset of disjoint regions to every variable. For convenience, we consider two sets of regions: Xi for all i ∈
{1, . . . , w} and Yi, j for all i, j ∈ {1, . . . , w} with i < j. First, we set f (vi) = {Xi} for all i ∈ {1, . . . , w}. Then, for every pair 
i, j ∈ {1, . . . , w} with i < j such that PO(vi, v j) is in C , we add Yi, j to both f (vi) and f (v j).

If DR(vi, v j) is in C , then f (vi) ∩ f (v j) = ∅, so f (vi) and f (v j) are disjoint. Otherwise, if PO(vi, v j) is in C , then 
f (vi) ∩ f (v j) �= ∅, f (vi) \ f (v j) �= ∅ and f (v j) \ f (vi) �= ∅, so f (vi) and f (v j) partially overlap. Thus, f is a satisfying 
assignment for (V , C) and this completes the proof. �

RCC8 is a generalisation of RCC5, so the same result holds for RCC8.

3.4. Infinite constraint languages

So far we have considered only finite constraint languages � ∈ 〈B〉b. If the language � is infinite, the representation of 
relations becomes problematic since the maximal arity is no longer bounded by a constant. In this case, the DNF formulas 
defining relations may be arbitrarily large. The time complexity of checking whether an instance of CSP(B) is a certificate for 
an instance of CSP(�) depends on the size of this representation. To circumvent this difficulty, we consider two possibilities 
– an oracle model and a restricted version of CSP, where the scope of every constraint contains only distinct variables. We 
remark that in both cases the fpt algorithm from Theorem 6 solves CSP(�) even if � is infinite.
9
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In the oracle model we assume that, given a constraint R(v̄) with R ∈ �, the time complexity of checking whether an 
instance C of CSP(B) implies R(v̄) is in polynomial time in the size of C , i.e. it is independent of the representation of R . 
Clearly, Claim 6.2 still holds in this case since the time to compute the record R(t) only depends on |X(t)|. Hence, CSP(�)

is fpt in the oracle model even if � is infinite.
Alternatively, we can restrict CSP(�) by disallowing repeated variables in the scopes of its constraints. Note that if the 

language B is JD, e.g. if B contains equality, then this restriction does not affect the expressive power of the language: 
one can introduce many copies of a variable x by adding constraints x = x′, x′ = x′′, . . . and use those in place of repeated 
variables. Note however that these additional constraints impact the structure of the instance. When the primal treewidth 
of an instance of CSP(�) is bounded by w and the scopes of constraints contain distinct variables, no constraint can have 
arity larger than w + 1. Thus, the size of the DNF formula defining any relation in this instance is bounded by a function 
of w and the computation of the record R(t) only depends on |X(t)|. Hence, repetition-free CSP(�) is in fpt even if � is 
infinite.

4. Tight lower bounds

By Corollary 7, CSPs for Cardinal Direction Calculus, Allen’s Interval Algebra and Block Algebra admit algorithms run-
ning in 2O (w log w) · nO (1) time on instances with primal treewidth w . It is natural to ask whether the dependence on w
can be improved. In this section we provide evidence that such an improvement is improbable by establishing tight lower 
bounds on the running time of the algorithms for these problems assuming the Exponential Time Hypothesis (ETH) [49].
3-Satisfiability is the problem of deciding whether a propositional formula in conjunctive normal form with at most three 
literals in each term admits a satisfying assignment. The ETH is a standard complexity assumption that rules out the exis-
tence of an algorithm for 3-Satisfiability running in subexponential time, i.e. there is no algorithm that runs in 2o(n) time 
where n is the number of variables.

We start by showing a reduction from the following problem to CSP(B∨=
CDC):

Vertex Colouring

Instance: (G, k), where G is an undirected graph with vertex set V (G) and edge set E(G), and k ∈N
Question: Does there exist χ : V (G) → {1, . . . , k} such that χ(u) �= χ(v) for all (u, v) ∈ E(G)?

Such a mapping χ is said to be a proper k-colouring of G . If such χ exists, we say that G is k-colourable. Lokshtanov et 
al. [58] introduced a framework for showing ETH-based lower bounds on parameterized algorithms and used it to prove the 
following theorem:

Theorem 9. Vertex Colouring cannot be solved in 2o(w log w) · nO (1) time on graphs with treewidth w unless the ETH fails.

Before we present our reduction, we prove two well-known useful observations about treewidth.

Lemma 10. Graphs with treewidth w are (w + 1)-colourable.

Proof. The treewidth of a graph G is alternatively characterised as min{ω(H) − 1 | G is a subgraph of H, H is chordal}, 
where ω(H) is the size of the largest clique in H (e.g. see [32, Chapter 12.4]). Chordal graphs are perfect graphs and 
this implies that H is colourable with ω(H) = w + 1 colours (e.g. see [32, Chapter 5.5]). Since G is a subgraph of H , it is 
also (w + 1)-colourable. �

An induced subgraph H of G is a graph such that V (H) ⊆ V (G) and (u, v) ∈ E(H) if and only if both (u, v) ∈ E(G) and 
u, v ∈ V (H).

Lemma 11. Let H be an induced subgraph of G and let w be the treewidth of H. Then the treewidth of G is at most w + |V (G)| −
|V (H)|.

Proof. Denote V (G) \ V (H) by U . Given a tree decomposition (T , X) of H of width w , observe that adding all variables 
in U to every bag X(t) yields a tree decomposition of G . Clearly, the maximum number of variables in a bag of the resulting 
tree decomposition is w + 1 + |U |, so the treewidth of G is at most w + |U | = w + |V (G)| − |V (H)|. �
Now we are ready to establish our first lower bound.

Theorem 12. CSP(B∨=
CDC) cannot be solved in 2o(w log w) · nO (1) time on instances with primal treewidth w unless the ETH fails.

Proof. Let (G, k) be an instance of the Vertex Colouring problem. We construct an instance I of CSP(B∨=
CDC) that is satisfi-

able if and only if G is k-colourable.
10
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Fig. 4. Construction from the proof of Theorem 12 for k = 4.

Table 3
Transformation of CDC relations into Allen 
relations.

CDC Definition Allen

= x1 = y1 and x2 = y2 e
N x1 = y1 and x2 > y2 si
E x1 > y1 and x2 = y2 f
S x1 = y1 and x2 < y2 s

W x1 < y1 and x2 = y2 fi
NE x1 > y1 and x2 > y2 {oi,mi,pi}
SE x1 > y1 and x2 < y2 d
SW x1 < y1 and x2 < y2 {p,m,o}
NW x1 < y1 and x2 > y2 di

First, we introduce variables zv for all v ∈ V (G), variables ci for all colours i ∈ {1, . . . , k}, and auxiliary variables h j for 
all j ∈ {1, . . . , k − 1}. Then, we add the following constraints:

(C1) ci{SW}ci+1, hi{N}ci and hi{W}ci+1 for all i ∈ {1, . . . , k − 1};
(C2) zv{=,NE}c1, zv{=,SW}ck for all v ∈ V (G);
(C3) zv{SW,=,NE}ci for all v ∈ V (G) and i ∈ {2, . . . , k − 1};
(C4) zv{SE}h j for all v ∈ V (G) and j ∈ {1, . . . , k − 1}, where SE is the negation of SE, i.e. SE = {S,SW,W,NW,N,NE,E,=};
(C5) zu{SW,NE}zv for all (u, v) ∈ E(G).

Towards proving correctness of the reduction, let χ : V (G) → {1, . . . , k} be a proper k-colouring of G . Define an assign-
ment f for I by setting f (ci) = (i, i) for all i ∈ {1, . . . , k}, f (h j) = ( j, j +1) for all j ∈ {1, . . . , k −1} and f (zv ) = (χ(v), χ(v))

for all v ∈ V (G). It is straightforward to verify that the constraints (C1)–(C4) are satisfied by this assignment. The constraints 
in (C5) are also satisfied because χ is a proper colouring of G .

In the opposite direction, let f be a satisfying assignment for I . Assume that f (ci) = (ai, bi) for all i ∈ {1, . . . , k}. Con-
straints (C1) imply that f (h j) = (a j, b j+1) for all j ∈ {1, . . . , k − 1}. Fig. 4 shows an example of the construction. Consider 
zv = (xv , yv) for an arbitrary v ∈ V (G). By (C2) and (C3), zv can only take values inside the rectangles with corners (ai, bi), 
(ai, bi+1), (ai+1, bi) and (ai+1, bi+1) (shaded in the figure) excluding the boundary except for the bottom left and top right 
corners. Constraints (C4) forbid zv from taking values inside the rectangles, which leaves only the corners as possible val-
ues. Thus, f (zv ) ∈ { f (c1), . . . , f (ck)} for all v ∈ V (G), and we can define a colouring χ by setting χ(v) = i whenever 
f (zv) = f (ci). Note that Constraints (C5) imply that f (xu) �= f (xv ) whenever (u, v) ∈ E(G). Therefore χ is a proper colour-
ing.

Now consider the structure of the instance I . Denote the primal treewidth of I by w and the treewidth of G by 
wG . Observe that the primal graph of I consists of G with 2k − 1 additional vertices for c1, . . . , ck and h1, . . . , hk−1. By 
Lemma 11, w ≤ wG + 2k − 1. Furthermore, by Lemma 10, G can be coloured with at most wG + 1 colours. Thus, we can 
safely assume that k ≤ wG and, consequently, w < 3wG . Therefore, if CSP(B∨=

CDC) admits a 2o(w log w) · nO (1) algorithm, then 
so does the Vertex Colouring and this contradicts the ETH by Theorem 9. �

We continue by establishing lower bounds on CSP(B∨=
IA ) and CSP(B∨=

BAd
). To prove the result, we use the following lemma:

Lemma 13. There is a polynomial-time reduction from CSP(B∨=
CDC) to CSP(B∨=

IA ) that preserves the primal graph of the instance.

Proof. Let (V , C) be an instance of CSP(B∨=
CDC) and suppose f is a satisfying assignment. Denote f (v) by (v1, v2) for all 

v ∈ V . We may assume without loss of generality that v1 < v2 for all v ∈ V , since all points in the image of f can be 
translated into the second quadrant of the coordinate plane, where v1 < 0 and v2 > 0. Thus, every pair of points (v1, v2)

can be viewed as an interval [v1, v2]. With this in mind, we produce an instance (V ′, C ′) of CSP(B∨=
CDC) with V ′ = V by 

converting every relation in C into a B∨=
IA relation according to the rules in Table 3. The disjunction of any subset of the 

CDC relations is obtained by taking the disjunction of their converted counterparts.
11
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Equivalence of (V , C) and (V ′, C ′) follows from the definitions of the basic relations of Cardinal Direction Calculus and 
Allen’s Interval Algebra. Clearly, the reduction requires polynomial time. Furthermore, there is a constraint in C ′ over a pair 
of variables if and only if there is a constraint in C over the same pair of variables. Thus, (V , C) and (V ′, C ′) have the same 
primal graph. �
Corollary 14. CSP(B∨=

IA ) and CSP(B∨=
BAd

) cannot be solved in 2o(w log w) · nO (1) time on instances with primal treewidth w unless the 
ETH fails.

Proof. The result for CSP(B∨=
IA ) follows directly by combining Theorem 12 with Lemma 13. Note that BBAd generalises BIA

(namely, BIA is BBAd for d = 1). Thus, the lower bound also holds for CSP(B∨=
BAd

). �
5. Applications based on patchwork

We analyse the applicability of our fpt result (Theorem 6) in this section. The patchwork property has not been directly 
verified for many formalisms—the list in Corollary 7 is quite meagre. However, it has been verified implicitly for wide classes 
of relations, and this is something that can be exploited. We first connect the patchwork property with the amalgamation 
property and homogeneous structures. This allows us to use model-theoretical concepts and results to identify interesting 
classes of relations that have the patchwork property. In the final step, we demonstrate how these ideas can be used on 
concrete examples — we study constraint languages that are first-order definable in (Q; <) and phylogeny languages.

5.1. Patchwork, amalgamation and homogeneity

When analysing PP from a model-theoretic angle, it is convenient to view CSPs in terms of homomorphisms. A homo-
morphism for τ -structures A, B is a mapping h : A → B that preserves each relation of A, i.e. if (a1, . . . , ak) ∈ RA for some 
k-ary relation symbol R ∈ τ , then (h(a1), . . . , h(ak)) ∈ RB . Let B be a structure with a (not necessarily finite) signature τ . 
CSP(B) is then the following decision problem:

Instance. A finite τ -structure A.
Question. Is there a homomorphism from A to B?

It is well known that this definition coincides with the definition given earlier; this is, for instance, discussed in [16, 
Section 2]. We will use an analogue of subinstances for τ -structures: a τ -structure A is a substructure of a τ -structure B if 
and only if (1) the domain of A is a subset of the domain of B and (2) for each R ∈ τ , the tuple a is in RA if and only if a is 
in RB . Equivalently, RA = RB ∩ An , where n is the arity of R . We need several kinds of homomorphisms in what follows. A 
strong homomorphism additionally satisfies the only if direction in the definition of a homomorphism, i.e. it also preserves 
the complements of relations. An embedding is an injective strong homomorphism. An isomorphism is a surjective (and thus 
bijective) embedding, and an automorphism is an isomorphism from A to itself. Let Aut(A) denote the set of automorphisms 
of A. It is easy to verify that Aut((Q; <, =, >)) contains the function f (x) = a + x for arbitrary a ∈ Q and the function 
g(x) = b · x for every rational number b > 0. However, the set of automorphisms contains many other types of functions.

We connect the definition of patchwork with the amalgamation property (AP). A class K of τ -structures has AP if for 
every B1, B2 ∈ K such that their maximal common substructure A contains all elements that are both in B1 and B2, there 
exists C ∈ K (called an amalgam) and embeddings f1 : B1 → C and f2 : B2 → C such that f1(a) = f2(a) for every a ∈ A. 
Let D be a countable τ -structure. Age(D) denotes the class of all finite τ -structures that embed into D. Various connections 
between patchwork and amalgamation concepts have been hinted upon in the literature many times (see e.g. Bodirsky and 
Jonsson [16], Huang [46], and Li et al. [55,56]) but the details have not been clearly spelled out. Baader & Rydval [8] proved 
the following result.

Theorem 15. Let D be a JE+PDJD structure (as defined in Section 2.1). If Age(D) has the amalgamation property, then D has the 
patchwork property.

Their results do not apply directly to structures that are k-ary. We complement Theorem 15 by showing that the same 
implication holds for k-ary JEPD structures that contain the k-ary equality relation.

Theorem 16. Let D be a k-ary JEPD τ -structure with domain D and assume that the k-ary equality relation Eqk = {(d, . . . , d) ∈ Dk |
d ∈ D} is in D. If Age(D) has the amalgamation property, then D has the patchwork property.

Proof. Consider the instances I1 = (V 1, C1), I2 = (V 2, C2) of CSP(D) in Definition 4 as τ -structures I1, I2. Note that the 
intersection I1[V 1 ∩ V 2] = I2[V 1 ∩ V 2] viewed as a τ -structure A is the maximal common substructure of I1, I2 and contains 
all elements that appear in both of them. To apply AP, we need to show that I1 and I2 embed into D. Recall that an 
embedding is an injective strong homomorphism.
12
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The remainder of the proof applies for all i ∈ {1, 2}. Since Ii is satisfiable, there is a homomorphism hi : Ii → D. Ad-
ditionally, Ii is complete and D has JEPD relations, so for all R ∈ τ , (hi(x1), . . . , hi(xk)) ∈ RD implies that the constraint 
R(x1, . . . , xk) is in Ci and it is satisfied. Hence, hi is a strong homomorphism. To show that it is injective, we observe 
that for all x, y ∈ Ii , if Eqk(x, y, . . . , y) ∈ Ci , then x = y. Otherwise, by completeness, there is another R ∈ τ such that 
R(x, y, . . . , y) ∈ Ci . By PD, R ∩ Eqk = ∅, so x �= y. Thus, hi is injective, and ergo, an embedding.

We know that I1, I2 ∈ Age(D) so, by AP, the amalgam of I1 and I2 is also in Age(D). Note that the structure C defined by 
(V 1 ∪ V 2, C1 ∪ C2) embeds into the amalgam. Hence, it is homomorphic to D and (V 1 ∪ V 2, C1 ∪ C2) is satisfiable. �

Theorems 15 and 16 allow us to relate PP to some properties and results that have been successfully used in the study 
of CSPs. To this end, we will use homogeneity. A homogeneous structure A is a countable structure such that for every 
isomorphism f : B → C between finite substructures B, C of A, there is an automorphism f ′ of A extending f . Intuitively 
speaking, a homogeneous structure enjoys the following property: the surroundings of two isomorphic substructures always 
look very similar. Homogeneity thus implies that the structure has an extremely high degree of symmetry. The following 
result is part of the classical Fraïssé’s Theorem [38].

Theorem 17. Age(A) has AP when A is a countable homogeneous structure with a countable signature.

Fraïssé’s Theorem is explained in most textbooks on model theory such as Hodges [45]. Combining Theorems 15, 16
and 17 gives us the following result.

Corollary 18. Let D denote a countable homogeneous structure with a countable signature.

1. If D is JE+PDJD, then D has PP, and
2. if D is a k-ary JEPD structure that contains the k-ary equality relation, then D has PP.

A large number of homogeneous structures are known from the literature (see, for example, the surveys by Macpher-
son [60] and Hirsch [44]) and they play an important role in CSP research. In fact, after the Feder-Vardi conjecture on 
finite-domain CSPs was settled (independently) by Bulatov [24] and Zhuk [80], much of the complexity-oriented work has 
concentrated on homogeneous infinite-domain CSPs. We note that all examples in Corollary 7 can be formulated by homo-
geneous structures; for instance, Hirsch [43] proved this for Allen’s Interval Algebra and Bodirsky and Wölfl [19] for RCC8. 
A fact to keep in mind is that one may have two structures A and B such that CSP(A) is the same computational problem 
as CSP(B), A is homogeneous, but B is not homogeneous. This phenomenon is, for instance, discussed (in the context of 
RCC8) by Bodirsky and Wölfl [19] and Huang et al. [47] (in the context of temporal constraints). A straightforward example 
is provided by the structures (Q; <) and (N; <N ) where <N denotes the ordering on the natural numbers. The structure 
(Q; <) is homogeneous while (N; <N ) is not,1 and CSP((Q; <)) and CSP((N; <N)) are the same computational problems.

5.2. Examples

The machinery presented above allows us to show fpt results for large families of CSPs. Our first example is the set of 
CSPs T whose constraint languages consist of finite subsets of 〈(Q;<)〉b. Well-known CSPs in T (with prominent appli-
cations in e.g. AI) are the Point Algebra [78], the ORD-Horn class [64] and certain scheduling problems [62], together with 
basic problems in complexity theory such as Betweenness and Cyclic Ordering [39]. Clearly, T contains many different 
CSPs based on non-binary relations and, in fact, the CSPs with binary relations are a subset of the Point Algebra and thus 
polynomial-time solvable [78]. One ought to observe that the CSP for Allen’s Interval Algebra is not in T since its domain 
consists of the closed convex subsets of Q and not of Q itself, but there is a straightforward reduction from Allen’s Interval 
Algebra to a certain problem in T . The CSPs in T have been intensively studied in the literature: for instance, Bodirsky and 
Kára [18] proved that any CSP in T is either polynomial-time solvable or NP-complete.

Arbitrarily choose CSP(�) in T . It is folklore that the structure Q = (Q; <, >, =) is homogeneous (see, for instance, 
Example 2.1.2 in Macpherson [60] for a proof sketch). The structure Q is obviously JEPD and it contains the binary equality 
relation, so it has PP by Corollary 18. Since CSP(Q) is decidable, it follows from Theorem 6 that CSP(�) is fpt. This proves 
the following.

Proposition 19. Every problem in T is fpt parameterized by the treewidth of the primal graph.

We continue by illustrating Theorem 6 with a more elaborate example. Phylogeny problems are used for phylogenetic 
reconstruction in bioinformatics, but also in areas such as database theory, computational genealogy and computational 

1 Consider f (1) = 0, which is a trivial isomorphism between the substructures ({1}; <N ) and ({0}; <N ), but cannot be extended to an automorphism – 
there is no way to choose f (0) such that f (0) < f (1).
13
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linguistics. A recent overview can be found in Warnow [79]. The problem is intuitively the following: given a partial de-
scription of a tree, is there a tree that is compatible with the given information? Many problems of this kind are NP-hard: 
concrete examples include the subtree avoidance problem [65], the forbidden triple problem [23] and the quartet consistency 
problem [76]. Fpt algorithms are thus an interesting option for solving phylogeny problems. Our basic idea is to rephrase 
phylogeny problems as CSPs and then apply Theorem 6. We formalise this below, mostly following Bodirsky et al. [17].

Let T be a tree, i.e. an undirected, acyclic, connected graph, and let r be the root of T . We only consider binary trees, 
i.e. all vertices except for the root have either degree 3 or 1, and the root has either degree 2 or 0. The vertex set of T
is denoted by V (T ) and the set of leaves L(T ) ⊆ V (T ) consists of the vertices of degree 1. For arbitrary u, v ∈ V (T ), we 
say that u lies below v if the path from u to the root r passes through v . We say that u lies strictly below v if u lies 
below v and u �= v . The youngest common ancestor (yca) of S ⊆ V (T ) is the vertex u that lies above all vertices in S and 
has maximal distance from r; this vertex is uniquely determined by S . The leaf structure of T is the {C}-structure (L(T ); C)

where (x, y, z) ∈ C for any x, y, z ∈ L(T ) if and only if yca({y, z}) lies strictly below yca({x, y, z}). Following the literature 
on phylogeny problems, we write x|yz instead of C(x, y, z).

An atomic phylogeny formula φ is a conjunction of formulas of the form x|yz and x = y. We say that φ with variables V is 
satisfiable if there exists a rooted binary tree T and a mapping s : V → L(T ) such that φ is satisfied by T under s. The atomic 
phylogeny problem Aphyl is the computational problem with atomic phylogeny formulas as instances and the question is 
whether the formula is satisfiable or not. Aphyl is connected to CSPs as follows.

Theorem 20. There exists a homogeneous {|, =}-structure A with a countable domain and the following property: an instance I of
Aphyl is satisfiable if and only if I (viewed as an instance of CSP({|, =})) homomorphically maps to A.

Proof. Use Proposition 2 in Bodirsky et al. [17]. �
The relation x|yz will be a basic relation in the CSP we are aiming for. Since we need a JEPD set of relations as the basis 

for Theorem 6, the following observation (see, for instance Bodirsky et al. [17, Section 2.1]) is useful.

Observation 21. Let x, y, z be arbitrary leaves in an arbitrarily chosen rooted binary tree. If x|yz, then it may be the case that y = z. 
However, x|yz implies that x �= y and x �= z. Hence, we either have x|yz, y|xz, z|xy or x = y = z.

Assume that the structure A in Theorem 20 has domain A and contains the relations |′ and =′ . Let P denote the structure 
(A; R1, R2, R3, R4) where R1(x, y, z) ⇔ x|′ yz, R2(x, y, z) ⇔ y|′xz, R3(x, y, z) ⇔ z|′xy and R4(x, y, z) ⇔ (x =′ y =′ z).

Proposition 22. Let � be a finite subset of 〈P〉b . Then CSP(�) is fpt parameterized by the treewidth of the primal graph.

Proof. We know that P ⊆ 〈(A; |′,=′)〉b and it is straightforward to verify that P is homogeneous since (A; |′, =′) is 
homogeneous—all relations in P can be obtained by permuting the arguments of relations in (A; |′, =′). The structure P
is JEPD by Observation 21 and it contains the ternary equality relation. Thus, P has PP by Corollary 18.2. Finally, CSP(P) is 
solvable in polynomial time [2] and the proposition follows from Theorem 6. �

This proves that the three examples of NP-hard phylogeny problems that were discussed earlier are fpt. We exemplify 
this with the aid of the forbidden triple problem (the exact formulations of the other two problems as CSPs based on 
relations in 〈P〉b can be found in Bodirsky et al. [17, Section 2.2]). This problem is the phylogeny problem concerning 
formulas

F (x, y, z) = ¬(x|yz)

and the parameterization is the primal treewidth of a conjunction of such formulas. The essence of Theorem 20 and Propo-
sition 22 is that there exists a relation R(x, y, z) ∈ 〈P〉b that exactly captures the formula F :

R(x, y, z) ≡ ¬R1(x, y, z)

or, equivalently,

R(x, y, z) ≡ R2(x, y, z) ∨ R3(x, y, z) ∨ R4(x, y, z).

Thus, the forbidden triple problem can be viewed as CSP({R}). The transformation from the forbidden triple problem to 
CSP({R}) is simply to replace each formula F (x, y, z) with the constraint R(x, y, z). This operation obviously preserves the 
treewidth of instances.

We remark that the disequality relation neq = {(a, b) ∈ A2 | a �= b} is used to define relations in some phylogeny 
examples—note that neq(x, y) ⇔ ¬R4(x, x, y) ⇔ R1(x, x, y) ∨ R2(x, x, y) ∨ R3(x, x, y) so the relation neq is a member of 〈P〉b.
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6. Beyond patchwork

There are interesting examples of structures A that do not have PP. An eminent example is the Branching Time Algebra
(BTA) [4] (also known as the Branching Point Algebra (BPA)) which has been used, for example, in planning [29], as the basis 
for temporal logics [36], and as the basis for a generalisation of Allen’s Interval Algebra [69]. We note that, in particular, 
the complexity of the branching variant of Allen’s Interval Algebra has recently gained attraction [10]. In BTA, the past of a 
time point is linearly ordered, but the future is only partially ordered (see Bodirsky [12, Section 5.2] for formal details). This 
implies that time becomes a directed tree-like structure with four basic relations =, <, > and ||, meaning “equal”, “before”, 
“after” and “unrelated”, respectively.

One may formulate BTA as a CSP(BBTA) where BBTA is JEPD, but one cannot formulate the problem so that BBTA has PP; 
this follows from adapting an argument by Hirsch [44, Section 4.1]. Both CSP(BBTA) and CSP(B∨=

BTA) are solvable in poly-
nomial time [44, Section 4.2], but there are finite � ⊆ 〈BBTA〉b such that CSP(�) is NP-hard [22]. It is thus natural to ask 
whether the CSP(�) problem is fpt for arbitrary finite � ⊆ 〈BBTA〉b. We show this in the affirmative by exploiting homogenis-
ability: a homogenisable structure is a structure that can be extended with a finite number of new relations in order to 
make the expanded structure homogeneous [25,42]. Homogenisation has recently become an interesting tool for analysing 
CSPs: examples include connections between homogenisation and local consistency algorithms for CSPs [7] and applications 
concerning logically defined CSPs [12, Section 4.3.3]. More background information about homogenisable structures can be 
found in the survey by Macpherson [60] and the thesis by Ahlman [1]. We will prove a general fpt result for homogenis-
able structures in Theorem 28, and thus prove that Theorem 6 can indeed be generalised to certain structures that do not 
have PP. In particular, this result proves that CSP(�) is fpt whenever � is a finite subset of 〈BBTA〉b. We divide the rest of 
this section into two parts, where the first part is concerned with ω-categorical structures and the second part describes 
how homogenisable structures can be used to obtain fpt results.

6.1. ω-categoricity

We first remind the reader of the definition of ω-categoricity: the (first-order) theory of a τ -structure A, which is denoted 
by Th(A), is the set of all first-order τ -sentences, i.e. formulas without free variables, that are satisfied by A, and A is said 
to be ω-categorical if Th(A) has exactly one model up to isomorphism. The concept of ω-categoricity plays a key role 
in the study of complexity aspects of CSPs [12], but it is also important from an AI perspective [43,46,50]. Examples of 
such structures include all structures with a finite domain and all structures that were presented in Section 2.5. The relation 
between ω-categorical structures and homogeneous structures can be summarised as follows. We say that a theory T admits 
quantifier elimination if for every formula φ(x1, . . . , xn), there is a quantifier-free formula ψ(x1, . . . , xn) such that T entails

∀x1 · · · ∀xn(ψ(x1, . . . , xn) ⇔ φ(x1, . . . , xn)).

Theorem 23. Let A be a structure.

1. If A is ω-categorical, then A is homogeneous if and only if Th(A) admits quantifier elimination [60, Proposition 3.1.6].
2. If A is a homogeneous structure with finite signature, then A is ω-categorical [60, Corollary 3.1.3].

A useful property of ω-categorical structures is that they can be refined into finite JE+PDJD structures. Let A =
(A; R1, . . . , Rm) denote a relational structure (that is not necessarily ω-categorical). The orbit of a tuple ā = (a1, . . . , ak) ∈ Ak , 
denoted by Orb(ā), is the set

{(g(a1), . . . , g(an)) | g ∈ Aut(A)}.
The orbits of k-tuples in A partition the set Ak: for arbitrary ā, ̄b ∈ Ak , either Orb(ā) = Orb(b̄) or Orb(ā) ∩Orb(b̄) = ∅, and for 
every ā ∈ Ak there exists a c̄ ∈ Ak such that ā ∈ Orb(c̄). If A is ω-categorical, then the set {Orb(ā) | ā ∈ Ak} is finite for every 
k ∈N; this is an important consequence of a result by Engeler, Ryll-Nardzewski and Svenonius (this theorem is covered by 
most textbooks on model theory such as Hodges [45]). The following definition will simplify our presentation.

Definition 24. Let A = (D; R1, . . . , Rm) denote a relational structure and let d ≥ 1. Define A≤d to be the relational structure 
over D whose relations are all orbits of at most d-ary tuples over A.

We collect a few straightforward facts about A≤d and we note that these are discussed in more detail by Baader & 
Rydval [8, Section 4]. Facts 1 and 2 are based on the observation that if a relation R contains the tuple ā = (a1, . . . , ak), then 
Orb(ā) ⊆ R , too (by the definition of automorphisms), while Fact 3 is a direct consequence of the observation on orbit size 
of ω-categorical structures that was made above.

Fact 1. The structure A≤d is JE+PDJD, but it is not a k-ary structure in general and it is not necessarily finite.
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Fact 2. Every m-ary relation R ∈ A with m ≤ d can be viewed as the union of relations in A≤d or, equivalently,

R(x1, . . . , xm) ≡
∨

S∈S

S(x1, . . . , xm)

for some S ⊆ A≤d .

Fact 3. The structure A≤d is finite if A is ω-categorical.

The following result connects structures A≤d with ω-categoricity, homogeneity and the patchwork property.

Theorem 25 (Immediate consequence of Theorem 5 in Baader & Rydval [8]). Let A denote an ω-categorical homogeneous relational 
structure containing at most d-ary relations for some d ≥ 2. Then A≤d has the patchwork property.

6.2. Homogenisation

We will now present a result (Theorem 28) concerning fixed-parameter tractability of CSPs based on structures that 
do not have PP. To illustrate the result, we will come back to the branching time problem at the end of this section. The 
proof will use various ways of defining relations with the aid of logical formulas. Thus, in addition to full first-order logic, 
we also need fragments where only certain logical operators are allowed: the existential fragment consists of formulas built 
using negation, conjunction, disjunction and existential quantification only, while the existential positive fragment additionally 
disallows negation. We emphasise that it is required that the equality relation is allowed in existential (positive) definitions, 
which is a difference compared to the definitions underlying the operation 〈·〉b. We begin with a decidability result.

Lemma 26. Let A be a relational structure and assume that the relations R1, . . . , Rk are existential positive definable in A. If CSP(A) is 
decidable, then CSP({R1, . . . , Rk}) is also decidable.

Proof. Suppose that, for i ∈ {1, . . . , k}, Ri has definition

φi(x1, . . . , xm) ≡ ∃u1 · · · unψi(x1, . . . , xm, u1, . . . , un)

where ψi is quantifier-free. We assume (without loss of generality) that each ψi is in DNF. The conversion to DNF can 
be done without introducing any negations. Define the (m + n)-ary relation R ′

i such that R ′
i(x1, . . . , xm, u1, . . . , un) ≡

ψi(x1, . . . , xm, u1, . . . , un).
Let I = (V , C) be an instance of CSP({R1, . . . , Rk}). We first construct an equivalent instance I ′ = (V ′, C ′) of 

CSP({R ′
1, . . . , R

′
k}). Start by setting V ′ = V . Arbitrarily choose a constraint Ri(x1, . . . , xm) in C . Expand V ′ with n new 

variables u1, . . . , un and add the relation R ′
i(x1, . . . , xn, u1, . . . , un) to C ′ . Repeat this process for all constraints in C . It is 

obvious that I is satisfiable if and only if I ′ is satisfiable.
Recall that the formulas ψ1, . . . , ψk are in DNF and that they contain no negations. If I ′ is satisfiable by an assignment 

f : V ′ → D , then we can construct a certificate that witnesses this. For each constraint R ′
i(x1, . . . , xm, u1, . . . , um), pick 

one term in ψi that is satisfied by f and put it into the set S . It follows that S is satisfiable if it is viewed as a CSP 
instance in the obvious way. Now, S only contains relations in A ∪ {=} — recall that the equality relation can be used in 
an existential positive definition but its negation ¬(x = y) cannot. For every constraint x = y in S , identify the variable x
with the variable y and note that the resulting set S ′ only contains relations in A and that it is satisfiable if and only if S
is satisfiable. This suggests the following algorithm: enumerate all possible certificates for S ′ and check whether at least 
one of them is satisfiable. Only a finite number of certificates exist, since A is finite and the decidability of CSP(A) implies 
decidability of the satisfiability test. We conclude that CSP({R ′

1, . . . , R ′
k}) is decidable and so is CSP({R1, . . . , Rk}). �

We will now focus on structures that are model-complete cores. The exact definition is not important for our purposes, 
but a certain characterisation of ω-categorical model-complete cores is very important.

Lemma 27 (Theorem 4.5.1 in Bodirsky [12]). A countable ω-categorical structure A is model-complete if and only if every first-order 
formula over A is equivalent to an existential positive formula over A.

Lemma 27 can be viewed as a restricted type of quantifier elimination. Model-complete cores are very useful when 
studying CSPs. It is known that every countable and ω-categorical structure A is homomorphically equivalent to an ω-
categorical model-complete core A′—this implies that CSP(A) and CSP(A′) can be viewed as the same problem [12, Sec-
tion 1.1]. The model-complete core A′ can, in various ways, be considered to be a more “structured” object than A and 
thus be easier to work with [12, Section 4.5]. Much of the work on the complexity of CSPs has consequently focused on 
model-complete cores.
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We are finally ready to prove the main result of this section. We stress that the definition of homogenisation of a 
structure A requires that only a finite number of relations are added to A. Otherwise, the resulting structure contains an 
infinite number of relations and this would prevent us from applying Theorem 6.

Theorem 28. Let B be a countably infinite ω-categorical structure with finite signature, and assume that B is a model-complete core 
and that CSP(B) is decidable. If B is homogenisable by relations that are first-order definable in B, then CSP(�) is fpt parameterized by 
the treewidth of the primal graph for arbitrary finite � ⊆ 〈B〉b .

Proof. Let C denote the finite homogeneous expansion of B and let d denote the maximal arity of relations in C. The 
structure C is ω-categorical by Theorem 23.2.

Claim 28.1. CSP(C≤d) is decidable.

We say that a relation R ⊆ Ak is preserved by a function f : A → A if for every (a1, . . . , ak) ∈ R , ( f (a1), . . . , f (ak)) is 
also in R . Let O be an orbit of k-tuples of C. It follows immediately from the definition of orbits that O is preserved by 
every function in Aut(C). This implies that O is first-order definable in C [12, Proposition 4.2.9], since C is a countable 
ω-categorical structure. A direct consequence is that O is also first-order definable in B, since C is a first-order definable 
expansion of B.

Recall that B is a countable ω-categorical model-complete core, so every first-order formula over B is logically equivalent 
to an existential positive formula over B by Lemma 27. We conclude that O has an existential positive definition in B. With 
this in mind, it follows that the relations in C≤d are existential positive definable in B, since C≤d only contains relations 
that are orbits of tuples of C. Lemma 26 thus implies that CSP(C≤d) is decidable, since C≤d only contains a finite number of 
relations by Fact 3.

Claim 28.2. C≤d has PP.

The structure C is an ω-categorical homogeneous structure that contains at most d-ary relations, so it has PP by Theo-
rem 25.

Claim 28.3. C≤d is JEPD.

The structure C≤d is JE+PDJD by Fact 1.

Theorem 6 combined with Claims 28.1-28.3 and the fact that C≤d is a finite structure implies that CSP(�) is fpt for 
arbitrary � ⊆ 〈C≤d)〉b. The structure B is ω-categorical, so Facts 2 and 3 imply that every relation in B can be viewed 
as a finite union of relations in B≤d . We know that B ⊆ C, so C≤d consequently contains one relation for each orbit of 
d-tuples in B, i.e. B≤d ⊆ C≤d . This implies that every relation in 〈B〉b has a logically equivalent relation in 〈C≤d〉b. We may 
(without loss of generality since � is finite) assume that we have a pre-computed table that, for every R ∈ �, contains the 
corresponding relation R ′ in 〈C≤d〉b. Given an instance (V , C) of CSP(�), we can thus convert it in polynomial time into an 
equivalent instance of CSP(�′) where �′ is a finite subset of 〈C≤d〉b. We conclude that CSP(�) is fpt. �

Let us now return to the branching time example that we discussed in the beginning of this section. Consider a structure 
BBTA = (B; =, <, >, ||) such that the Branching Time Algebra problem is the same computational problem as CSP(BBTA). 
Two suitable structures have been pointed out by Bodirsky [12, Section 5.2]: they are referred to as S and T . We do not 
consider S in what follows, since it is not a model-complete core. The structure T , though, is a countably infinite model-
complete core that is ω-categorical. Hence, we let BBTA coincide with T . Note that Bodirsky views these structures as having 
three relations ≤, �= and ||, where || allows both that two elements are unrelated or that they are equal. This difference 
is irrelevant in our setting; for instance, x < y holds if and only if both x ≤ y and x �= y hold. Now, BBTA is a countably 
infinite model-complete core that is ω-categorical and, additionally, Bodirsky et al. [13] have shown that BBTA expanded by 
the relation

{(x, y, z) ∈ B3 | ∃u ∈ B ((u < x ∨ u = x) ∧ (u > z ∨ u||y) ∧ (z > u ∨ z||u))}
is homogeneous. Clearly, this relation is first-order definable in BBTA. We know that BBTA is polynomial-time solvable, so 
CSP(�) is fpt for arbitrary finite � ⊆ 〈BBTA〉b by Theorem 28.

It may be illuminating to compare the Branching Time Algebra with its sibling – the partial-order time algebra (PTA). PTA 
has various applications in, for instance, the analysis of concurrent and distributed systems [5,54]. In PTA, both the past and 
the future of a time point are partially ordered. This implies that time becomes a partial order with four basic relations 
=PTA, <PTA, >PTA and ||PTA, meaning “equal”, “before”, “after” and “unrelated”, respectively. The satisfiability problem for 
PTA can be formulated with a countable finite homogeneous structure D (known as the random partial order) such that D is 
17
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JEPD and CSP(D) is decidable. Thus, Theorem 6 is directly applicable in this case (since D has PP by Corollary 18) and ho-
mogenisation is not necessary. For more details concerning PTA, together with a complexity classification, see Kompatscher 
& Van Pham [52].

7. Discussion and future research

Huang et al. [47] proved that CSP(A) is in XP whenever A is a binary constraint language with aNAP. This property is 
PP restricted to binary relations, with the completeness condition replaced by the algebraic closure condition. aNAP is less 
restrictive than PP, so it might be preferred in practical implementations for some constraint languages. However, in the 
worst case, using aNAP yields no advantage over using PP, and it is only defined for binary languages. We can thus conclude 
that our algorithm has a larger scope of applicability than the algorithm by Huang et al.

Bodirsky & Dalmau [14] show that CSP(A) is in XP whenever A is a countable structure that is ω-categorical. There are 
examples of ω-categorical model-complete cores that cannot be made homogeneous by adding any finite set of relations. 
A concrete example based on the countable atomless Boolean algebra can be found in [12, Section 5.7]. We conclude that 
there are still ω-categorical structures A for which we do not know whether CSP(A) is fpt or not. Closing this gap is an 
obvious direction for future research.

There are many relevant constraint satisfaction problems where our algorithmic framework is not directly applicable. 
Obvious examples are constraint languages that do not enjoy the patchwork property and where homogenisation is impos-
sible or a suitable homogenisation process is not known. Examples include the Unit Interval Algebra (i.e. Allen’s Interval 
Algebra restricted to intervals of equal length [68]), the Simple Temporal Problem [31], the OPRA calculus [63], various 
disjunctive temporal problems [67], metric extensions of Allen’s Interval Algebra [53] and certain spatial formalisms includ-
ing the Cardinal Direction Calculus for extended objects by Goyal and Egenhofer [41]. We note, however, that some of these 
problems have been analysed according to their parameterized complexity [26] by using other methods.

Our algorithm solves CSPs over Cardinal Direction Calculus, Allen’s Interval Algebra and Block Algebra in 2O (w log w)

time. Under the Exponential Time Hypothesis, significantly improving the dependence of w is not possible in these cases. 
However, for RCC5 and RCC8 the running time is slower, since the number of certificates is 2O (w2) . Either proving a tight 
lower bound under plausible complexity assumptions or finding a faster 2o(w2) · poly(||I||) algorithm for RCC5 or RCC8 is an 
interesting future direction. We believe that such an improved algorithm would need new ideas, and the RCC5 and RCC8 
algorithms by Jonsson et al. [51] do not seem to be useful in such a project (as was discussed in Section 3.3).

Another plausible way forward is to consider parameterizations that are less restrictive or orthogonal to primal treewidth. 
Examples that come to mind are the treewidth of the dual graph or the incidence graph and variants of hypertree width, 
since these have been successfully used for efficiently solving CSPs as well as other combinatorial problems. However, these 
parameters can be ruled out for finite constraint languages, since there the treewidth of the primal, dual and incidence 
graphs, as well as all variants of hypertree width, are within a constant factor of each other [74]. This is not true for infinite 
constraint languages, so here additional parameters are interesting to study.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

The first and third authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC 
project EP/V00252X/1). The second and the fourth authors were supported by the Wallenberg AI, Autonomous Systems and 
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. In addition, the second author was partially 
supported by the Swedish Research Council (VR) under grants 2017-04112 and 2021-04371.

References

[1] Ove Ahlman, Limit Laws, Homogenizable Structures and Their Connections, PhD thesis, Department of Mathematics, Uppsala University, 2018.
[2] Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, Jeffrey D. Ullman, Inferring a tree from lowest common ancestors with an application to the 

optimization of relational expressions, SIAM J. Comput. 10 (3) (1981) 405–421.
[3] James F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832–843.
[4] Frank Anger, Peter Ladkin, Rita Rodriguez, Atomic temporal interval relations in branching time: calculation and application, in: Applications of Artificial 

Intelligence IX, in: SPIE, vol. 1468, 1991, pp. 122–136.
[5] Frank D. Anger, On Lamport’s interprocessor communication model, ACM Trans. Program. Lang. Syst. 11 (3) (1989) 404–417.
[6] Stefan Arnborg, Derek Corneil, Andrzej Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Matrix Anal. Appl. 8 (2) (1987) 277–284.
[7] Albert Atserias, Szymon Torunczyk, Non-homogenizable classes of finite structures, in: Proc. 25th EACSL Annual Conference on Computer Science Logic 

(CSL-2016), 2016, pp. 16:1–16:16.
[8] Franz Baader, Jakub Rydval, Description logics with concrete domains and general concept inclusions revisited, in: Proc. 10th International Joint Con-

ference on Automated Reasoning (IJCAR-2020), 2020, pp. 413–431.
[9] Philippe Balbiani, Jean-François Condotta, Luis Fariñas del Cerro, Tractability results in the block algebra, J. Log. Comput. 12 (5) (2002) 885–909.
18

http://refhub.elsevier.com/S0004-3702(23)00026-7/bib71E3DE06673E054C11D66F00F896AB6Fs1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bibD78A3BFDD120057602B1630E770AEF53s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bibD78A3BFDD120057602B1630E770AEF53s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib3CAA3C6740714F76E62095915A276636s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib3BD94FF9BDF9417F66950C9CD30CF33Fs1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib3BD94FF9BDF9417F66950C9CD30CF33Fs1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib2C07455B9B381822E3145A6C9B17D2AFs1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib2CD7AAD607CCBDA28D624086C334B484s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib8043B441C42153D80C8CAC82420B2E62s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib8043B441C42153D80C8CAC82420B2E62s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib9224C752A949292C5FACF4BB329D8654s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib9224C752A949292C5FACF4BB329D8654s1
http://refhub.elsevier.com/S0004-3702(23)00026-7/bib55270D8D1AD9DAAB3EC41595AABD7071s1


K.K. Dabrowski, P. Jonsson, S. Ordyniak et al. Artificial Intelligence 317 (2023) 103880
[10] Alessandro Bertagnon, Marco Gavanelli, Alessandro Passantino, Guido Sciavicco, Stefano Trevisani, Branching interval algebra: an almost complete 
picture, Inf. Comput. 281 (2021) 104809.

[11] Umberto Bertelé, Franscesco Brioschi, Nonserial Dynamic Programming, Academic Press, 1972.
[12] Manuel Bodirsky, Complexity of Infinite-Domain Constraint Satisfaction, Lecture Notes in Logic., vol. 52, Cambridge University Press, 2021.
[13] Manuel Bodirsky, David Bradley-Williams, Michael Pinsker, András Pongrácz, The universal homogeneous binary tree, J. Log. Comput. 28 (1) (2018) 

133–163.
[14] Manuel Bodirsky, Víctor Dalmau, Datalog and constraint satisfaction with infinite templates, J. Comput. Syst. Sci. 79 (1) (2013) 79–100.
[15] Manuel Bodirsky, Martin Grohe, Non-dichotomies in constraint satisfaction complexity, in: Proc. 35th International Colloquium on Automata, Languages 

and Programming (ICALP-2008), 2008, pp. 184–196.
[16] Manuel Bodirsky, Peter Jonsson, A model-theoretic view on qualitative constraint reasoning, J. Artif. Intell. Res. 58 (2017) 339–385.
[17] Manuel Bodirsky, Peter Jonsson, Trung Van Pham, The complexity of phylogeny constraint satisfaction problems, ACM Trans. Comput. Log. 18 (3) (2017) 

23:1–23:42.
[18] Manuel Bodirsky, Jan Kára, The complexity of temporal constraint satisfaction problems, J. ACM 57 (2) (2010) 9:1–9:41.
[19] Manuel Bodirsky, Stefan Wölfl, RCC8 is polynomial on networks of bounded treewidth, in: Proc. 22nd International Joint Conference on Artificial 

Intelligence (IJCAI-2011), 2011, pp. 756–761.
[20] Hans L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (6) (1996) 1305–1317.
[21] Hans L. Bodlaender, Ton Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms 21 (2) (1996) 358–402.
[22] Mathias Broxvall, Peter Jonsson, Point algebras for temporal reasoning: algorithms and complexity, Artif. Intell. 149 (2) (2003) 179–220.
[23] David Bryant, Building Trees, Hunting for Trees, and Comparing Trees, PhD thesis, University of Canterbury, 1997.
[24] Andrei Bulatov, A dichotomy theorem for nonuniform CSPs, in: Proc. 58th Annual Symposium on Foundations of Computer Science (FOCS-2017), 2017, 

pp. 319–330.
[25] Jacinta Covington, Homogenizable relational structures, Ill. J. Math. 34 (4) (1990) 731–743.
[26] Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Disjunctive temporal problems under structural restrictions, in: Proc. 35th 

AAAI Conference on Artificial Intelligence (AAAI-2021), vol. 35, 2021, pp. 3724–3732.
[27] Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Solving infinite-domain CSPs using the patchwork property, in: Proc. 35th 

AAAI Conference on Artificial Intelligence (AAAI-2021), vol. 35, 2021, pp. 3715–3723.
[28] Adnan Darwiche, Recursive conditioning, Artif. Intell. 126 (1–2) (2001) 5–41.
[29] Thomas L. Dean, Mark S. Boddy, Reasoning about partially ordered events, Artif. Intell. 36 (3) (1988) 375–399.
[30] Rina Dechter, Constraint Processing, Elsevier Morgan Kaufmann, 2003.
[31] Rina Dechter, Itay Meiri, Judea Pearl, Temporal constraint networks, Artif. Intell. 49 (1–3) (1991) 61–95.
[32] Reinhard Diestel, Graph Theory, 5th edition, Graduate Texts in Mathematics, vol. 173, Springer, 2017.
[33] Rodney G. Downey, Michael R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science., Springer, 2013.
[34] Ivo Düntsch, Sanjiang Li, Extension properties of Boolean contact algebras, in: Proc. 13th International Conference on Relational and Algebraic Methods 

in Computer Science (RAMiCS-2012), 2012, pp. 342–356.
[35] Ivo Düntsch, Sanjiang Li, On the homogeneous countable Boolean contact algebra, Log. Log. Philos. 22 (2013) 213–251.
[36] E. Allen Emerson, Joseph Y. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time temporal logic, J. ACM 33 (1) (1986) 

151–178.
[37] Jörg Flum, Martin Grohe, Parameterized Complexity Theory, Springer, 2006.
[38] Roland Fraïssé, Sur certaines relations qui généralisent l’ordre des nombres rationnels, C. R. Acad. Sci. 237 (1953) 540–542.
[39] Michael R. Garey, David S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.
[40] Georg Gottlob, Francesco Scarcello, Martha Sideri, Fixed-parameter complexity in AI and nonmonotonic reasoning, Artif. Intell. 138 (1–2) (2002) 55–86.
[41] Roop Goyal, Max Egenhofer, The direction-relation matrix: a representation for directions relations between extended spatial objects, in: Proc. The 

Annual Assembly and the Summer Retreat of University Consortium for Geographic Information Systems Science, 1997.
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